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Abstract: Many motor carriers must generate tours for their vehicles without full knowledge about actual
transportation demand. Often, new transportation demand is requested after vehicles have begun their tours and
the motor carrier must dynamically modify tours in order to consider new transportation requests. Such dynamic
changes can have a significant impact on tour length, emissions, costs, and profitability. This paper seeks to
quantify the impact of dynamics on motor carrier performance. For this, the decision making process of motor
carriers is simulated based on scenarios with different levels of dynamism to compare the resulting profitability.
Simulation experiments indicate that motor carrier performance can be significantly increased if advance demand
notification times are increased from below ten hours to above twelve hours. It appears that driver’s working hour
regulations as imposed by European Union legislation have a particular impact on this jump in profitability.
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1 Introduction

While planning vehicle tours on a day-to-day basis used
to be common practice in the motor carrier industry,
the recent years have shown an increasing interest in
dynamic vehicle routing. One reason for this devel-
opment is the increasing commitment to just-in-time
practices and the reduction of inventory levels. With
reduced inventory buffers any mismatch between sup-
ply and demand can result into significant disturbances
of supply chain performance. With sometimes only a
few hours of safety stock at hand, companies commit-
ted to just-in-time practices are more likely to require
emergency orders in order to prevent inventory short-
ages. Motor carriers must be able to modify already
planned tours in order to fulfil such transportation re-
quests arriving with short advance notice.

The level of dynamism a motor carrier has to deal
with is often regarded as exogenous variable. How-
ever, in some cases the level of dynamism can be ac-
tively controlled. One source of dynamism is lacking
visibility over transportation processes in intermodal
transportation chains. Onward transportation can of-
ten only be organised after arrival of a container at
an intermodal transshipment terminal. This, however,
creates a high level of dynamism for motor carriers as
transportation shall typically start as soon as possible.
Advances in communication and information technol-
ogy allow obtaining real-time information about con-
tainers in transit. For example, IBM and Maersk Lo-
gistics have jointly developed a system for tracking
shipping containers around the world (Collins (2005)).
The real-time tracking devices use a combination of
wireless technologies to submit container-related data
such as the physical location. If such container track-
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ing devices are used, the arrival time of containers at
terminals can be estimated with high accuracy. This
allows for organising onward transportation before the
container is unloaded. Consequently, the level of dy-
namism the motor carrier has to deal with is reduced.

Another source of dynamism is the time delay between
realisation of transportation demand and the time the
dispatcher receives the transportation request. Car-
riers and shippers can collaborate in order to change
business processes and integrate information systems
to increase the speed with which information about
transportation requests travels to the dispatcher. The
earlier the dispatcher knows about new transportation
requests the more time is available to re-optimise vehi-
cle tours. Decreasing the level of dynamism does not
come for free. Improving visibility over containers in
transit incurs costs for investing in the required tech-
nology. Modifying business processes and integrating
information systems also incurs costs which are diffi-
cult to justify if the return on investment is not known.

Motor carriers operating on a day-to-day basis may
want to increase flexibility of their services by improv-
ing their capability of fulfilling same day transporta-
tion requests. Building up this capability, however,
may incur costs for equipping vehicles with telematics
devices allowing to locate vehicles and to communicate
with drivers. The increased flexibility achieved by con-
sidering same-day requests translates in a higher level
of dynamism, but may result in gained market share.
Whether costs for deploying fleet telematics systems
are justified depends on whether the additional market
share that can be gained outweighs a potentially lower
operational efficiency resulting from the increased level
of dynamism.

In order to justify investments into technology, redefi-
nition of business process, and integration of informa-
tion systems, one needs to understand how the level
of dynamism impacts the performance of motor car-
rier operations. The goal of this paper is to assess the
impact of dynamism in long-distance haulage where
regulations concerning drivers’ working hours must be
considered. The remainder of this paper is organised as
follows. First we survey related work. Then, the prob-
lem considered in this paper is described. Thereafter,
the decision making process and the simulation con-
ducted are described and discussed. Eventually, some
concluding remarks are given.

2 Related Work

In order to deal with dynamism motor carriers must
have timely access to all relevant information about
the transportation system, i.e. information about cur-
rent transportation processes as well as information

about transportation requests. Fleet telematics sys-
tems allow tracking vehicles and obtaining informa-
tion about the state of drivers and vehicles. Data
obtained by such fleet telematics systems can be au-
tomatically transferred to logistics systems as shown
in Goel (2007), Gruhn et al. (2003), and Erkens and
Kopfer (2001). Information concerning transportation
requests can be obtained by integrating information
systems throughout the supply chain. The integration
of supply chain information systems is studied for ex-
ample by Gunasekaran and Ngai (2004) and Themis-
tocleous et al. (2004).

Psaraftis (1988) and Psaraftis (1995) provide compre-
hensive discussion of dynamic vehicle routing. Typical
vehicle routing problems in long-distance haulage are
so-called Pickup and Delivery Problems (PDP). Com-
prehensive surveys on the PDP are provided Mitrović-
Minić (1998) and Desaulniers et al. (2002). Dynamic
Pickup and Delivery Problems are studied for example
by Savelsbergh and Sol (1998), Powell et al. (2000),
Mitrović-Minić (2001), Fleischmann et al. (2004), Yang
et al. (2004), Pankratz (2005), and Goel and Gruhn
(2008). Most of the literature on dynamic vehicle rout-
ing seeks to present solution approaches for specific
scenarios having a certain degree of dynamism.

This work seeks to quantify the value of advance noti-
fication times for transportation requests, i.e., the time
between when transportation requests become known
and when the requests can first be served. Jaillet and
Wagner (2006) quantify the value of advance notifi-
cation times for the online travelling salesman prob-
lem in form of improved competitive ratios. The cer-
tainly most related work to this paper is presented by
Tjokroamidjojo et al. (2006) who present a dynamic
load assignment problem to quantify the benefits of ad-
vance demand notifications. Although their approach
is very similar to the approach presented in this pa-
per, there are various differences. Tjokroamidjojo et al.
focus on small-scale transportation problems with 50
transportation requests to be served in 20 days, while
this paper focuses on large-scale transportation prob-
lems with 500 transportation requests to be served in
5 days. Consequently, the approach presented in this
paper cannot rely on optimisation techniques. Instead,
meta-heuristics are used to find solutions to the plan-
ning problem. Although also considering long-distance
haulage, regulations concerning drivers’ working hours
are not regarded by Tjokroamidjojo et al.. This pa-
per determines the value of advance notification times
for long-distance haulage in which European Union
regulations concerning drivers’ working hours must be
considered. Tjokroamidjojo et al. study various sce-
narios in which the time difference between notifica-
tion of transportation demand and final decision on
load/driver assignments is either zero, two, or four
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days. While there is a large efficiency gap between zero
days and two days between notification of transporta-
tion demand and final decision on load/driver assign-
ments, moving from two to four days difference does
not improve efficiency very much. This paper provides
a detailed study on the value of advance notification
times ranging from two to 48 hours. Furthermore, this
paper assumes that not all transportation requests ar-
rive dynamically. Instead, various scenarios are stud-
ied in which ten to ninety per cent of all transportation
requests are known well in advance and the remaining
requests arrive dynamically.

3 Problem considered

The Pickup and Delivery Problem with
Profits

In this paper we consider a generalisation of the Pickup
and Delivery Problem with Time Windows (PDPTW).
The PDPTW is the problem of finding a set of tours,
for a fleet of vehicles, in order to serve a set of trans-
portation requests at minimal costs. In the case of full
truckloads each transportation request is specified by
the origin and destination of the load, and time in-
tervals during which origin and destination must be
visited. Each vehicle has a given start location, and
an end location, and can serve at most one transporta-
tion request at a time. In other words, the Pickup
and Delivery Problem with Time Windows deals with
the construction of routes in order to visit all pickup
and delivery locations and satisfy precedence, pairing,
and time window constraints. Precedence constraints
deal with the restriction that each pickup location has
to be visited prior to visiting the corresponding de-
livery location. Pairing constraints restrict the set of
admissible routes such that one vehicle has to do both
the pickup and the delivery of the load of one trans-
portation request. Time window constraints restrict
the time during which pickup and delivery locations
may be visited.

In the Pickup and Delivery Problem with Profits
(PDPP) it is not necessary to serve all transportation
requests. Each transportation request is associated a
revenue which only can be collected if the transporta-
tion request is served. The goal of the PDPP is to
maximise profits, i.e. the difference between all col-
lected revenues and the costs for operating the tours.
The PDPP is a combined load acceptance and routing
problem which generalises the PDPTW and the Trav-
elling Salesman Problem with Profits studied by Feillet
et al. (2005). Furthermore, the PDPP is a special case
of the General Vehicle Routing Problem (GVRP) in-
troduced by Goel and Gruhn (2008).

We will now give a mathematical formulation of the
PDPP. Let O denote the set of transportation requests
(orders) and V denote the set of vehicles. For all o ∈
O let n(o,1) and n(o,2) denote the pickup and delivery
locations. For all v ∈ V let n(v,1) and n(v,2) denote the
start and end locations of the vehicle’s tour. Let

N :=
⋃

o∈O
{n(o,1), n(o,2)} ∪

⋃
v∈V

{n(v,1), n(v,2)}

and

A := N ×N \ {(n, n) | n ∈ N}.

For each node n ∈ N lower and upper bounds specify-
ing the time windows are denoted by tmin

n and tmax
n . For

each vehicle v ∈ V the travel time for an arc (n, m) ∈ A
including some possible service time at node n is de-
noted by dv

nm. For each vehicle v ∈ V the cost for
travelling from node n ∈ N to node m ∈ N is denoted
by cv

nm. For each order o ∈ O the revenue gained when
the order is served is denoted by po. Every vehicle has
a capacity of r. At every node a shipment may be
loaded or unloaded which requires or releases a certain
amount of the vehicle’s capacity. For every n ∈ N
let rn denote the amount loaded or unloaded at the
node. If a shipment is loaded rn is non-negative, if it
is unloaded rn is non-positive.

The PDPP can be modelled using the binary variables
xv

nm and yv
n. xv

nm indicates whether m ∈ N is visited
immediately after node n ∈ N by vehicle v ∈ V (xv

nm =
1), or not (xv

nm = 0). yv
n indicates whether node n ∈ N

is visited by vehicle v ∈ V (yv
n = 1), or not (yv

n = 0).
For each node n ∈ N the PDPP contains the variables
tn and ρn. If node n ∈ N is visited by a vehicle tn
specifies the arrival time and ρn specifies the current
load of the vehicle. If no vehicle visits node n ∈ N
both tn and ρn are without any meaning.

The PDPP is

maximise∑
v∈V

( ∑
o∈O

yv
n(o,1)

po −
∑

(n,m)∈A

xv
nmcv

nm

)
(1)

subject to∑
(n,m)∈A

xv
nm =

∑
(m,n)∈A

xv
mn for all v ∈ V, n ∈ N (2)

yv
n =

∑
(n,m)∈A

xv
nm for all v ∈ V, n ∈ N (3a)

∑
v∈V

yv
n ≤ 1 for all n ∈ N (3b)

for all v ∈ V, (n, m) ∈ A with n 6= n(v,2) :
if xv

nm = 1 then tn + dv
nm ≤ tm

(4a)
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tmin
n ≤ tn ≤ tmax

n for all n ∈ N (4b)

tn(o,1) ≤ tn(o,2) for all o ∈ O (5)

yv
n(v,1)

= yv
n(v,2)

= 1 for all v ∈ V (6a)

yv
n(o,1)

= yv
n(o,2)

for all o ∈ O, v ∈ V (6b)

ρn(v,1) = rn(v,1) for all v ∈ V (7a)

for all v ∈ V, (n, m) ∈ A with n 6= n(v,2) :
if xv

nm = 1 then ρm = ρn + rm
(7b)

0 ≤ ρn ≤ r (7c)

xv
nm ∈ {0, 1} for all v ∈ V, (n, m) ∈ A,

yv
n ∈ {0, 1} for all v ∈ V, n ∈ N (8)

The objective function is represented by (1). Equation
(2) represents the flow conservation constraints which
impose that each vehicle which reaches a node n ∈ N
also departs from the node. Constraints (3a) and (3b)
impose that each node is visited at most once. In-
equality (4a) imposes that each node which is not the
starting point of a tour is reached no earlier than the
preceding node plus the time required to travel from
the preceding node to the node. Inequality (4b) im-
pose that each arrival time is within the time windows
of the node. Constraint (5) represents the precedence
constraint imposed on the sequence in which customer
nodes are visited. Equation (6a) imposes that each
tour passes the specified start and end point of the ve-
hicle. Equation (6b) represents the pairing constraint
which imposes that pickup and delivery location of
an order are visited by the same vehicle. Constraints
(7a) to (7c) are the capacity constraints. Finally, con-
straints (8) impose that the values of xv

nm and yv
n are

binary.

Drivers’ Working Hours

Drivers’ working hours in the European Union are reg-
ulated by EC regulation 561/2006 which entered into
force in April 2007. According to the regulation driving
periods, breaks, and rest periods for a single manned
vehicle must be scheduled as follows:

– After a driving period (i.e. the accumulated driv-
ing time between subsequent breaks and rest peri-
ods) of four and a half hours a driver shall take an
uninterrupted break of not less than 45 minutes,
unless she/he takes a rest period.

– The daily driving time (i.e. the accumulated driv-
ing time between the end of one daily or weekly
rest period and the beginning of the following
daily or weekly rest period) shall not exceed 9
hours. A regular daily rest period is any period of
rest of at least 11 hours.

Further regulations apply, e.g. for drivers engaged in
multi-manning, the maximum weekly working time,
the accumulated driving time during any two consec-
utive weeks, and the duration of weekly rest periods.
However, they are not considered in this paper for sim-
plicity. Figure 1 illustrates an example of the schedule
of a drivers’ working day. As we can see, drivers’ work-
ing hour regulations have a high impact on total travel
times, i.e. the time required to travel from one location
to another including driving periods, breaks, and rest
periods. In this paper we assume that vehicle tours
must comply with above regulations. For a more com-
prehensive discussion of EC regulation 561/2006 and
approaches for considering drivers’ working hours in
vehicle routing the reader is referred to Goel (2009).
In order to consider drivers’ working hours within the
PDPP we need to treat the parameter dv

nm as a vari-
able depending on the previous activities performed by
the driver. That is, dv

nm must include the pure driving
time plus the time required for compulsory break and
rest periods.
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Figure 1: Driving periods, breaks, and rest periods
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and rest periods as planned by the decision maker, i.e. at any point in time the decision maker has full
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4 Decision making process

This section describes the decision making process used to assess the impact of dynamism on motor

carrier performance. Whenever new transportation requests become known the decision maker seeks
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Figure 1: Driving periods, breaks, and rest periods

Dynamics

In this paper it is assumed that the only external source
of dynamism is the arrival of new transportation re-
quests. More precisely, we assume that in the begin-
ning of the planning period a certain percentage of all
transportation requests is known and new transporta-
tion requests arrive dynamically. Furthermore, it is as-
sumed that vehicles move with constant speed and that
drivers take their breaks and rest periods as planned by
the decision maker, i.e. at any point in time the deci-
sion maker has full knowledge about position and state
of all vehicles. Within our dynamic planning scenario
we must regularly update the start location for each
vehicle according to the current progress of transporta-
tion processes. Furthermore, we need to keep track of
each served transportation request.

4 Decision making process

This section describes the decision making process used
to assess the impact of dynamism on motor carrier
performance. Whenever new transportation requests
become known the decision maker seeks to insert the
new requests into tours using the insertion heuristic



ILS 2010 – Casablanca (Morocco), April 14-16

described in Goel and Gruhn (2008). Each iteration
of this method can be divided into the following three
phases:

1. Determine incremental costs of insertion:
For each unscheduled transportation request and
each vehicle, determine the incremental costs of
inserting the transportation request into the tour
of the vehicle.

2. Propose insertion: For each unscheduled trans-
portation request, propose insertion to the tour
with lowest incremental costs.

3. Accept proposal: Among all proposals received
for a tour, determine the most profitable trans-
portation request, i.e., the transportation with the
biggest (positive) difference between revenue and
incremental costs.

This method continues to insert transportation re-
quests to tours until no further insertion is profitable.
Thereafter, a Large Neighbourhood Search is per-
formed to dynamically optimise the schedule consid-
ering all transportation requests known. The Large
Neighbourhood Search algorithm can be described as
follows:

0. Initialisation: Choose an initial solution; choose
a stopping condition

1. Repeat the following until the stopping condition
is met:

(a) Remove: Choose a number k and randomly
remove k transportation requests from their
tours

(b) Re-insert: Generate a new solution by ap-
plying the insertion method

(c) Move or not: If the new solution is feasible
and better than the current solution, replace
the current solution by the new solution

We assume that drivers are continuously instructed
about new task via mobile communication devices.
That is, drivers are either busy fulfilling their cur-
rent tasks or idle waiting for a new task. It is as-
sumed that drivers immediately start travelling to-
wards the next destination when they are informed
about a new task. Furthermore, it is assumed that once
a driver has started travelling towards the next destina-
tion he/she cannot be diverted until the destination is
reached. Under these assumptions it is easy to see that
drivers should not be informed too early, as this would
reduce the possibilities for dynamically reoptimising
tours considering new transportation requests. On the
other hand, drivers should neither be informed too late,
as this would result in unproductive waiting times.

Therefore, we assume that drivers are informed accord-
ing to a Minimum-Wait Least-Commitment strategy.
That is, if a travel time of ∆ is required to reach the
next destination and the time window at the destina-
tion opens at time t, the driver will be informed at time
t−∆ or the earliest time thereafter. With this strategy
we do not commit to travel to the next destination un-
necessarily early. Furthermore, this strategy minimises
the unproductive waiting time of the vehicle.

5 Simulation

We simulate the routing of a fleet of homogeneous ve-
hicles in order to fulfil a set of full-truckload pickup
and delivery requests. Different test cases are gener-
ated which distinguish themselves by the percentage
of transportation requests which are known well in ad-
vance and by the advance notification times for dy-
namically arriving transportation requests. By simu-
lating decision making processes of motor carriers we
can show how the profitability depends on the level of
dynamism.
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Figure 2: Distribution of pickup and delivery locations

In all simulation experiments tours for 100 vehicles
are generated considering 500 transportation request.
Each vehicle travels at a speed of 75 km/h and regu-
lations concerning drivers’ working hours as described
above must be complied with. Travel distances are
based on the direct distances, however are multiplied
by 1.3 in order to consider deviation occurring in road
transport. Travel costs are proportional to the travel
distance. The revenue of all transportation requests is
set to double the costs arising for travelling between
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pickup and delivery location. That is, shippers are not
only willing to pay for the transport itself, but also
for the return trip of the vehicle to the pickup loca-
tion. Pickup and delivery locations of transportation
requests are distributed as illustrated in Figure 2 in
which the frequency of a location being either pickup
or delivery location of a transportation request is indi-
cated by the size of the circle. Most of the transporta-
tion requests incur a pickup or delivery in the region
between Paris, Düsseldorf, and Frankfurt. Some trans-
portation requests, however, have very remote pickup
or delivery locations, for example Florence, Dublin,
Gothenburg, and Helsinki. Time windows at pickup
and delivery locations are set to either 2 or 12 hours.
The difference between the begin of the time windows
at pickup and delivery location is equal to the min-
imal time required to travel from the pickup location
to the delivery location, i.e. the sum of handling times,
pure driving times, and the minimal time required for
breaks and rest periods. The begin of time windows
at pickup locations are equally distributed within the
5 days of our planning horizon.

In the beginning of our simulation, tours are gener-
ated from scratch using the insertion method described
above. Afterwards, the Large Neighbourhood algo-
rithm is used to optimise the solution. The resulting
solution after one hour of computation time is used
as in initial solution for the simulation experiments.
In each time period new transportation requests be-
come known dynamically. In our simulations the Large
Neighbourhood Search algorithm was only allowed 60
seconds of computing time per timestep (representing
one hour in our simulation scenario). All decisions
made may be revised at any time unless the driver is
already informed about the respective task. With the
beginning of a new timestep the start location of every
vehicle is updated in order to consider the execution of
drivers’ tasks.

Time window length: 2 hours
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Figure 3: Results of computational experiments with small
time windows

Figures 3 illustrates the results of our computational

Time window length: 12 hours
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Figure 4: Results of computational experiments with large
time windows

experiments for test cases in which the length of each
time window is 2 hours. As can be seen, with advance
notification times of two hours, profitability of the car-
rier grows significantly with an increase in the per-
centage of transportation requests known in advance.
Interestingly, the profitability does not increase signif-
icantly when increasing advance notification times to
ten hours or below. In fact, profitability may even de-
crease slightly. This, of course, is an outcome of the in-
herent randomness of the Large Neighbourhood Search
and the dynamic nature of the planning problem. As
each decision made at one point in time influences the
options available at a future point in time, long-term
profitability can decrease even if decisions are optimal
in the short-term. When advance notification times
are increased from below 10 hours to above 12 hours,
profitability can be significantly improved. Further-
more, advance notification times of more than a day
may be reduced to 12 hours with only moderate reduc-
tion of profitability. An interesting observation is that
the sharp increase in profitability occurs when advance
notification times approximately match the duration of
a daily rest period of 11 hours. An explanation that
may come to mind is, that when advance notification
times are above 11 hours, a driver can take a daily rest
period immediately before beginning to serve a trans-
portation request. This is of particular importance if
time windows are very narrow and there is no possi-
bility to take an additional rest period between pickup
and delivery of a load. Looking at the results of our
simulation experiments for test cases with large time
windows in Figure 4, we can see that very similar re-
sults are obtained even though it is possible to include
an additional rest period between pickup and deliv-
ery of a load. As similar simulation experiments con-
ducted for problems without drivers’ working hours do
not show this sharp increase, it appears that drivers’
working hour regulations are a crucial factor in dy-
namic vehicle routing.
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Another interesting phenomenon which can be ob-
served in both Figure 3 and Figure 4 contradicts our
intuition. One would expect that a higher percent-
age of transportation requests known well in advance
would always result in higher profitability. However,
our results show that best results are obtained when
only 10% of transportation requests are known in ad-
vance and advance notification times are 48 hours. Of
all experiments with advance notification times of 48
hours the worst results are obtained when 90% of trans-
portation requests are known in advance. One expla-
nation for this phenomenon is that with an increase in
problem size the search space grows exponentially. In
a small search space a larger percentage of the search
space can be explored by the heuristic, resulting in a
higher probability of finding high quality solutions.

In the PDPP an increase in profitability does not nec-
essarily coincide with a reduction of empty mileage as
not all transportation requests must be served. There-
fore, increases in profit may be achieved by selecting
highly profitable transportation requests even if the
resulting plan has a high ratio between empty mileage
and total mileage. A final result of our computational
experiments is that we could observe that the ratio be-
tween empty and total mileage is strongly negatively
correlated with the profit. We found a correlation fac-
tor of −.86 which indicates that despite the carrier’s
objective to maximise profits we can decrease the ratio
between empty and total mileage and resulting carbon
dioxide emissions when reducing the level of dynamism
the carrier has to deal with.

6 Concluding remarks

This paper studies the impact of dynamism on motor
carrier performance by simulating the carrier’s deci-
sion making process in different scenarios with differ-
ent advance notification times and different percentage
of transportation requests known well in advance. It
is shown that in our setup profitability can be signif-
icantly improved if advance notification times are in-
creased from below 10 hours to above 12 hours. That
is, if advance notification times are below the length
of a daily rest period, profitability can be significantly
improved by increasing them to above the length of
a daily rest period. The increase in profitability can
justify investments in technology, collaborations with
shippers, and integration of information systems and
investments in technology in order to increase advance
notification times.

We can see that the reduction in profitability is fairly
moderate if advance notification times are reduced
from 24 hours or more to just above 12 hours. If in-
creased flexibility would allow gaining market share by

accepting same-day transportation requests, carriers
operating on a day-to-day basis may consider invest-
ing into capabilities for dynamic fleet management as
operational efficiency is not affected very much.

Our computational experiments also show that profits
are strongly negatively correlated with the ratio be-
tween empty and total mileage. Thus, managing the
level of dynamism helps a carrier to increase profits
and reduce emissions simultaneously.

We could see that additional information is not always
beneficial in large-scale dynamic vehicle routing. As
the size of the search space grows exponentially com-
pared to the number of transportation requests consid-
ered, one should carefully choose those transportation
requests which are most relevant for optimisation. Re-
ducing the planning horizon in order to reduce the size
of the search space can be a more adequate approach
than including all information available.
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Mitrović-Minić, S. (2001). The dynamic pickup and
delivery problem with time windows. Ph.D. thesis,
School of Computing Science, Simon Fraser Univer-
sity, Burnaby, BC, Canada.

Pankratz, G. (2005). Dynamic vehicle routing by
means of genetic algorithm. International Jour-
nal of Physical Distribution & Logistics Manage-
ment 35 (5), 362–383.

Powell, W., M. Towns, and A. Marar (2000). On the
value of optimal myopic solutions for dynamic rout-
ing and scheduling problems in the presence of user
noncompliance. Transportation Science 34 (1), 67–
85.

Psaraftis, H. (1988). Dynamic vehicle routing prob-
lems. In B. Golden and A. Assad (Eds.), Vehicle
routing: Methods and studies, pp. 233–248. North-
Holland Amsterdam.

Psaraftis, H. (1995). Dynamic vehicle routing: Status
and prospects. Annals of Operations Research 61,
143–164.

Savelsbergh, M. and M. Sol (1998). DRIVE: dynamic
routing of independent vehicles. Operations Re-
search 46, 474–490.

Themistocleous, M., Z. Irani, and P. E. D. Love (2004).
Evaluating the integration of supply chain informa-
tion systems: A case study. European Journal of
Operational Research 159, 393–405.

Tjokroamidjojo, D., E. Kutanoglu, and G. D. Taylor
(2006). Quantifying the value of advance load in-
formation in truckload trucking. Transportation Re-
search Part E 42, 340–357.

Yang, J., P. Jaillet, and H. Mahmassani (2004). Real-
time multi-vehicle truckload pickup-and-delivery
problems. Transportation Science 38 (2), 135–148.


	Introduction
	Related Work
	Problem considered
	Decision making process
	Simulation
	Concluding remarks

