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Abstract

In Canada transport companies must ensure that truck drivers can comply with Canadian

Commercial Vehicle Drivers Hours of Service Regulations. Canadian regulations comprise the

provisions found in U.S. hours of service regulations as well as additional constraints on the

maximum amount of driving and the minimum amount of off-duty time on each day. This paper

presents a mixed integer programming formulation and an iterative dynamic programming ap-

proach for minimising the duration of truck driver schedules complying with Canadian hours of

service regulations. Computational experiments show that schedule durations can be significantly

reduced compared with a previously presented approach which only focusses on feasibility.

Keywords: Canadian Hours of Service Regulations, Multiple Time Windows, Vehicle Schedul-

ing
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1 Introduction

Economic pressure forces transport companies to maximise vehicle utilisation and minimise labour

costs. An excessive focus on these economic objectives can lead to unreasonable tight schedules

which do not give drivers enough time for recuperation. In a study on sleeping patterns of truck

drivers by Mitler et al. (1997), Canadian truck drivers regularly drove up to 13 hours between rest

periods of 8 consecutive hours. The study revealed that on average drivers sleep less than 5 hours

per day which is 2 hours less than the average ideal reported by the drivers. More than half of the

drivers had at least one six-minute interval of drowsiness while driving within the five-day study. This

indicates that driver fatigue contributes to reduced road safety. An important key in preventing fatigue

related accident risk is to explicitly consider driving and working hour regulations when generating

truck driver schedules

The first research known to the author explicitly considering government regulations concerning

working hours of truck drivers is the work by Xu et al. (2003) who study a rich pickup and delivery

problem with multiple time windows and restrictions on drivers’ working hours as imposed by the

U.S. Department of Transportation. Xu et al. (2003) conjecture that the problem of finding a feasible

schedule complying with U.S. Hours of Service regulations is NP-hard in the presence of multiple

time windows. Archetti and Savelsbergh (2009) show that if each location must be visited within a

single time window, schedules complying with U.S. Hours of Service regulations can be determined

in polynomial time. Goel and Kok (2010) show that schedules complying with U.S. Hours of Service

regulations can also be determined in polynomial time in the case of multiple time windows, if the gap

between subsequent time windows at the same location is at least 10 hours. This situation occurs, for

example, if, because of opening hours of docks, handling operations can only be performed between

8.00 AM and 10.00 PM. Rancourt et al. (2010) present a tabu search heuristic for a combined vehicle

routing and truck driver scheduling problem using a modified version of the approach by Goel and

Kok (2010).

Heuristics for combined vehicle routing and truck driver scheduling in Europe are presented by

Goel (2009), Kok et al. (2010), and Prescott-Gagnon et al. (2010). The work by Goel (2010) presents

the first method capable of finding a feasible schedule complying with European regulations if such a

schedule exists. European Union regulations are more complex than U.S. hours of service regulation,
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because they require that in addition to rest periods, in which drivers can sleep, shorter breaks for

recuperation must be scheduled after four and a half hours of driving. An exact approach and various

heuristics for truck driver scheduling in Australia are presented by Goel et al. (2011). Due to the spe-

cific structure of Australian regulations these approaches are completely different to the approaches

for truck driver scheduling in the Unites States and the European Union.

Kok et al. (2011) present a mixed integer programming formulation for the minimum duration

truck driver scheduling problem in the European Union focusing on a planning horizon of at most

13 hours, i.e. a working day. Unlike the other approaches for truck driver scheduling, the approach

by Kok et al. (2011) assumes that truck drivers may only take rest periods at customer locations

and at suitable parking lots. For longer planning horizons of multiple days Goel (2011) presents a

mixed integer programming formulation for minimum duration truck driver scheduling problems with

multiple time windows where truck drivers may only take rest periods at customer locations and at

suitable parking lots. The formulation can be used for the regulations in the United States and the

European Union.

Canadian Commercial Vehicle Drivers Hours of Service Regulations comprise regulations similar

to those in the United States and additional constraints limiting the maximum amount of driving time

on a day and the minimum amount of off-duty and break time on a day. Goel and Rousseau (2011)

introduce the Canadian truck driver scheduling problem which is the problem of determining whether

it is possible to schedule driving and working hours of truck drivers in such a way that a sequence of

locations can be visited within given time windows and that Canadian hours of service regulations are

complied with. Goel and Rousseau (2011) present a dynamic programming approach for the Canadian

truck driver scheduling problem and show that the additional constraints which differentiate Canadian

regulations from U.S. regulations significantly complicate the problem.

This paper presents a mixed integer programming formulation for a variant of the Canadian truck

driver scheduling problem in which each customer must be visited within one of multiple time win-

dows, in which rest periods must only be taken at customer locations or at suitable parking lots, and in

which the objective is to minimise the total duration of the schedule. An iterative dynamic program-

ming approach is presented which minimises schedule durations using an adaptation of a dynamic

programming approach presented by Goel and Rousseau (2011). Computational experiments demon-
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strate that the duration of schedules is significantly smaller compared to the duration of schedules

obtained by the adaptation of the dynamic programming approach. Furthermore, computational ex-

periments show that the minimum duration Canadian truck driver scheduling problem can be solved

faster with the iterative dynamic programming approach than solving the mixed integer program with

CPLEX 12.

The remainder of this paper is organised as follows. In Section 2 Canadian hours of service

regulations are described. Section 3 presents the mixed integer programming formulation. Section 4

presents the iterative dynamic programming approach. In Section 5 computational experiments are

presented demonstrating the effectiveness of the iterative dynamic programming approach. Section 6

concludes the paper.

2 Canadian Commercial Vehicle Drivers Hours of Service Regulations

Canadian regulations concerning driving and working hours of commercial vehicles are described

in Transport Canada (2005) and interpreted in Canadian Council of Motor Transport Administrators

(2007). In Canada two sets of regulations exist, one of which applies to driving conducted south of

latitude 60◦ N and one to driving north of latitude 60◦ N. In the remainder of this paper we focus

on the subset of regulations applicable for driving south of latitude 60◦ N because this is the area of

major economic concern. The regulation defines on-duty time as the period that begins when a driver

begins work and ends when the driver stops work and includes any time during which the driver is

driving or conducting any other work. Off-duty time is defined by any period other than on-duty

time. The regulation imposes restrictions on the maximum amount of on-duty time and the minimum

amount of off-duty time during a day. According to the regulation a day means a 24-hour period that

begins at some time designated by the motor carrier. For simplicity and w.l.o.g. let us assume in

the remainder that this time is midnight. The regulations imposes the following constraints on truck

driver schedules:

1. The driver must not drive after accumulating 13 hours of driving time since the end of the last

period of at last 8 consecutive hours of off-duty time.
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2. The driver must not drive after accumulating 14 hours of on-duty time since the end of the last

period of at last 8 consecutive hours of off-duty time.

3. The driver must not drive after 16 hours of time have elapsed since the end of the last period of

at least 8 consecutive hours of off-duty time.

4. The driver must not drive for more than 13 hours in a day.

5. The driver must accumulate at least 10 hours of off-duty time in a day.

6. At least 2 hours of off-duty time must be taken on a day which are not a part of a period of

8 consecutive hours of off-duty time as required by provisions 1 to 3. If a period of more

than 8 consecutive hours of off-duty time is scheduled, the amount exceeding the 8th hour may

contribute to these 2 hours.

7. Periods of less than 30 minutes, in which the driver is neither driving nor working, do not count

toward the minimum off-duty time requirements required by provisions 5 and 6, even though

they are considered as off-duty time by the definition.

Table 1 summarises the parameters imposed by the regulation and the notation used in this paper.

3 A Mixed Integer Programming Model

Let us consider a sequence of n locations which shall be visited by a truck driver. At each location

1 ≤ i ≤ n some stationary work of duration wi shall be conducted. This work shall begin within

one of multiple disjunct time windows. The number of time windows at location 1 ≤ i ≤ n shall

be denoted by Ti. For each 1 ≤ τ ≤ Ti the τ th time window at location i shall be denoted by the

interval [tmin
i,τ , t

max
i,τ ]. The driving time required for moving from location i to i + 1 shall be denoted

by δi,i+1. The time horizon shall be denoted by thorizon. We assume that drivers may only take rest

periods after arrival at a location and before starting the work activity at the location. The model

presented in this section can also be used if drivers may take rest periods after completing the work or

at suitable parking lots on the trip from one location to another. As indicated by Goel (2011) dummy
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Notation Value Description

trest 8 h The minimum duration of a rest period

tdrive 13 h The maximum accumulated driving time between two consecutive rest periods and

the maximum accumulated driving time on a day

ton-duty 14 h The amount of accumulated on-duty time since the last rest period after which a driver

may only continue to drive if a new rest period is taken

telapsed 16 h The amount of time elapsed since the last rest period after which a driver may only

continue to drive if a new rest period is taken

tday 24 h The duration of a day

toff-duty 10 h The minimum amount of off-duty time on a day

tbreak 2 h The minimum amount of off-duty time on a day which is not part of a rest period

tidle 1
2 h The minimum length of an off-duty period period to be counted

Table 1: Parameters imposed by the regulation

locations with zero working time can be inserted in the tour in order to allow drivers to take take rest

periods after completing the work or at suitable parking lots.

The Canadian minimum duration truck driver scheduling problem (CAN-MDTDSP) is the prob-

lem of determining a schedule complying with Canadian regulations in which all work activities begin

within one of the corresponding time windows and which has the minimal duration.

Let us begin with presenting a mixed integer programming formulation of a relaxation of the

CAN-MDTDSP in which only provisions 1 to 3 of the regulation must be complied with. These

provisions are similarly structured as the provisions in the United States. Thus we can provide a

mixed integer programming formulation of the relaxed CAN-MDTDSP similar to the formulation

presented by Goel (2011).

For each location 1 ≤ i ≤ n the formulation comprises variables xarrival
i , xrestbegin

i , xrestend
i , xstart

i ,

xend
i representing the arrival time, the start and end time of a period of at least 8 consecutive hours of

off-duty time, and the start and end time of the work at location i. For each location 1 ≤ i ≤ n and

each time window 1 ≤ τ ≤ Ti the formulation comprises a binary variable yi,τ indicating whether

the τ th time window of location i is used (yi,τ = 1) or not (yi,τ = 0). Furthermore, for each location
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1 ≤ i ≤ n the formulation comprises the binary variable zrest
i indicating whether a period of at least

8 consecutive hours of off-duty time is taken at location i (zrest
i = 1) or not (zrest

i = 0).

The relaxed CAN-MDTDSP is

minimise

xend
n − xstart

1 (1)

subject to

xarrival
i ≤ xrestbegin

i for all 1 ≤ i ≤ n (2.1)

x
restbegin
i + zrest

i · trest ≤ xrestend
i for all 1 ≤ i ≤ n (2.2)

xrestend
i ≤ xstart

i for all 1 ≤ i ≤ n (2.3)

xstart
i + wi = xend

i for all 1 ≤ i ≤ n (2.4)

xend
i + δi,i+1 = xarrival

i+1 for all 1 ≤ i < n (2.5)

τ≤Ti∑
τ=1

yi,τ = 1 for all 1 ≤ i ≤ n (3.1)

yi,τ t
min
i,τ ≤ xstart

i for all 1 ≤ i ≤ n, 1 ≤ τ ≤ Ti (3.2)

xstart
i ≤ thorizon − yi,τ (thorizon − tmax

i,τ ) for all 1 ≤ i ≤ n, 1 ≤ τ ≤ Ti (3.3)

xarrival
k − xstart

i ≤ telapsed + thorizon
j<k∑
j=i+1

zrest
j for all 1 ≤ i < k ≤ n : δk−1,k > 0 (4)

j<k∑
j=i

δj,j+1 ≤ tdrive + thorizon
j<k∑
j=i+1

zrest
j for all 1 ≤ i < k ≤ n : δk−1,k > 0 (5)

j<k∑
j=i

δj,j+1 +

j<k∑
j=i

wj ≤ ton-duty + thorizon
j<k∑
j=i+1

zrest
j for all 1 ≤ i < k ≤ n : δk−1,k > 0 (6)

xarrival
i ∈ [0, thorizon] for all 1 ≤ i ≤ n (7.1)

x
restbegin
i ∈ [0, thorizon] for all 1 ≤ i ≤ n (7.2)

xrestend
i ∈ [0, thorizon] for all 1 ≤ i ≤ n (7.3)
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xstart
i ∈ [0, thorizon] for all 1 ≤ i ≤ n (7.4)

xend
i ∈ [0, thorizon] for all 1 ≤ i ≤ n (7.5)

yi,τ ∈ {0, 1} for all 1 ≤ i ≤ n, τ ∈ Ti (7.6)

zrest
i ∈ {0, 1} for all 1 ≤ i ≤ n (7.7)

The objective function (1) is to minimise the duration between the start of the first work and the

end of the last work. Constraints (2.1) to (2.5) demand that all time values coincide with the course

of events. If zrest
i = 1 for some1 ≤ i ≤ n then constraint (2.2) demands that the end of the rest period

is at least trest higher than the begin of the rest period. Otherwise, xrestbegin
i and xrestend

i are without

meaning and can be placed anywhere between xarrival
i and xstart

i . Constraint (3.1) demands that at any

location exactly one of the time windows is used. Constraints (3.2) and (3.3) are the time windows

constraints. Constraint (4) demands that no driving is conducted after telapsed has elapsed since the last

rest period of at least trest duration. Constraint (5) demands that the accumulated amount of driving

without a rest period of at least trest duration does not exceed tdrive. Constraint (6) demands that no

driving is conducted after ton-duty of driving and work have been accumulated since the last rest period

of at least trest duration. The variable domains are given by (7.1) to (7.7).

The relaxed CAN-MDTDSP defined by (1) to (7) does not consider the constraints of the reg-

ulation regarding the maximum amount of driving time and the minimum amount of off-duty and

break time on each day. In order to consider these constraints we need to add variables to the problem

formulation which indicate the day of the arrival time at a location as well as the day of the start and

end of the work conducted at a location. For each location 1 ≤ i ≤ n we add the integer variables

darrival
i , dstart

i , and dend
i and we add the following constraints.

(darrival
i − 1) · tday ≤ xarrival

i < darrival
i · tday for all 1 ≤ i ≤ n (8.1)

(dstart
i − 1) · tday ≤ xstart

i < dstart
i · tday for all 1 ≤ i ≤ n (8.2)

(dend
i − 1) · tday ≤ xend

i < dend
i · tday for all 1 ≤ i ≤ n (8.3)

darrival
i ∈ {1, . . . , bthorizon/tdayc+ 1} for all 1 ≤ i ≤ n (8.4)

dstart
i ∈ {1, . . . , bthorizon/tdayc+ 1} for all 1 ≤ i ≤ n (8.5)
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dend
i ∈ {1, . . . , bthorizon/tdayc+ 1} for all 1 ≤ i ≤ n (8.6)

We assume that, if an optimal solution exists, the optimal solution satisfies

dend
i ≤ darrival

i + 1 for all 1 ≤ i ≤ n.

Note that this condition is only violated if xstart
i − xarrival

i is very large for any 1 ≤ i ≤ n, i.e. there

is a long period of off-duty time. If there is the possibility that this condition cannot be satisfied for

all locations, we can add dummy locations to the tour with zero driving time, zero working time and

unlimited time window. By this the long period of off-duty time can be split into several parts and the

condition of the assumption can be satisfied.

The constraints on the maximum amount of driving time on a day can be considered by introduc-

ing additional variables rdrive
i , pdrive

i , and qdrive
i . rdrive

i represents the accumulated amount of driving

until arrival at location i. pdrive
i and qdrive

i represent the accumulated amount of driving until the end

of the last day preceding darrival
i and dend

i . We add the following constraints to the formulation.

rdrive
i =

j<i∑
j=1

δj,j+1 for all 1 ≤ i ≤ n (9.1)

pdrive
1 = 0 (9.2)

rdrive
n ≤ qdrive

n + tdrive (9.3)

Constraint (9.1) determines the value of rdrive
i . Constraint (9.2) initialises pdrive

1 and constraint (9.3)

demands that the accumulated amount of driving until the end of the schedule does not exceed the

accumulated amount of driving until the end of the day preceding dend
n plus tdrive.

If darrival
i = dend

i for some 1 ≤ i ≤ n then the value of qdrive
i must have the same value as pdrive

i .

This is achieved by adding the following constraints to the formulation.

pdrive
i ≤ qdrive

i + (dend
i − darrival

i ) · thorizon for all 1 ≤ i ≤ n (9.4)

qdrive
i ≤ pdrive

i + (dend
i − darrival

i ) · thorizon for all 1 ≤ i ≤ n (9.5)

If darrival
i < dend

i for some 1 ≤ i ≤ n then the time between xarrival
i and xend

i includes midnight. As no

driving is conducted in this time qdrive
i must have the same value as rdrive

i and we add the following

constraints to the formulation.

qdrive
i ≤ rdrive

i + (darrival
i + 1− dend

i ) · thorizon for all 1 ≤ i ≤ n (9.6)
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rdrive
i ≤ qdrive

i + (darrival
i + 1− dend

i ) · thorizon for all 1 ≤ i ≤ n (9.7)

Furthermore, we need the make sure that the accumulated amount of driving on day darrival
i does not

exceed the limit. This is achieved by adding the following constraints to the formulation.

qdrive
i ≤ pdrive

i + tdrive + (darrival
i + 1− dend

i ) · thorizon for all 1 ≤ i ≤ n (9.8)

If dend
i−1 = darrival

i for some 1 < i ≤ n then the value of pdrive
i must have the same value as qdrive

i−1 .

This is achieved by adding the following constraints to the formulation.

pdrive
i ≤ qdrive

i−1 + (darrival
i − dend

i−1) · thorizon for all 1 < i ≤ n (9.9)

qdrive
i−1 ≤ pdrive

i + (darrival
i − dend

i−1) · thorizon for all 1 < i ≤ n (9.10)

If dend
i−1 < darrival

i for some 1 ≤ i ≤ n then the time between xend
i−1 and xarrival

i includes midnight.

The amount of driving conducted on day dend
i−1 is determined by subtracting the amount of driving

between midnight and xarrival
i from rdrive

i . This is achieved by adding the following constraints to the

formulation.

pdrive
i ≤ rdrive

i − (xarrival
i − dend

i−1 · tday) + (dend
i−1 + 1− darrival

i ) · thorizon for all 1 < i ≤ n (9.11)

rdrive
i − (xarrival

i − dend
i−1 · tday) ≤ pdrive

i + (dend
i−1 + 1− darrival

i ) · thorizon for all 1 < i ≤ n (9.12)

We need the make sure that the accumulated amount of driving on day darrival
i does not exceed the

limit. This is achieved by adding the following constraints to the formulation.

pdrive
i ≤ qdrive

i−1 + tdrive + (dend
i−1 + 1− darrival

i ) · thorizon for all 1 < i ≤ n (9.13)

Eventually, we add the variable domains to the formulation.

pdrive
i ∈ [0, thorizon] for all 1 ≤ i ≤ n (9.14)

qdrive
i ∈ [0, thorizon] for all 1 ≤ i ≤ n (9.15)

rdrive
i ∈ [0, thorizon] for all 1 ≤ i ≤ n (9.16)

The example illustrated in Figure 1 shows the values of rdrive
i , pdrive

i , and qdrive
i resulting from

constraints (9.1) to (9.16).
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Day 1 Day 2

W
O
R
K

1h

DRIVE

7h

BREAK

2h

W
O
R
K

1h

DRIVE

3h

REST

8h

W
O
R
K

1h

DRIVE

6h

W
O
R
K

1h

DRIVE

7h

W
O
R
K

1h

rdrive
1 = 0, pdrive

1 = 0, qdrive
1 = 0, r

offduty
1 = 0, p

offduty
1 = 0, q

offduty
1 = 0, rbreak

1 = 0, pbreak
1 = 0, qbreak

1 = 0

rdrive
2 = 7, pdrive

2 = 0, qdrive
2 = 0, r

offduty
2 = 2, p

offduty
2 = 0, q

offduty
2 = 0, rbreak

2 = 2, pbreak
2 = 0, qbreak

2 = 0

rdrive
3 = 10, pdrive

3 = 0, qdrive
3 = 0, r

offduty
3 = 10, p

offduty
3 = 0, q

offduty
3 = 0, rbreak

3 = 2, pbreak
3 = 0, qbreak

3 = 0

rdrive
4 = 16, pdrive

4 = 11, qdrive
4 = 11, r

offduty
4 = 10, p

offduty
4 = 10, q

offduty
4 = 10, rbreak

4 = 2, pbreak
4 = 2, qbreak

4 = 2

rdrive
5 = 23, pdrive

5 = 11, qdrive
5 = 11, r

offduty
5 = 10, p

offduty
5 = 10, q

offduty
5 = 10, rbreak

5 = 2, pbreak
5 = 2, qbreak

5 = 2

Figure 1: Example

In order to consider the constraints on the minimum amount of off-duty and break time on a

day we must distinguish between off-duty periods of less than tidle and off-duty periods of at least

tidle duration. For this we add a binary variable zidle
i which indicates whether xstart

i − xarrival
i < tidle

(zidle
i = 1) or not (zidle

i = 0). We add the following constraints to the formulation.

zidle
1 = 0 (10.1)

xstart
i − xarrival

i + zidle
i · thorizon ≥ tidle for all 1 < i ≤ n (10.2)

xstart
i − xarrival

i < tidle + (1− zidle
i ) · thorizon for all 1 < i ≤ n (10.3)

zidle
i ∈ {0, 1} for all 1 ≤ i ≤ n (10.4)

The constraints on the minimum amount of off-duty time on a day can be considered by intro-

ducing additional variables roffduty
i , poffduty

i , and qoffduty
i . roffduty

i represents the accumulated amount of

off-duty time until the start of the work at location i. poffduty
i and qoffduty

i represent the accumulated

amount of off-duty time until the end of the last day preceding darrival
i and dstart

i . We add the following

constraints to the formulation.

r
offduty
1 = xstart

1 (11.1)

r
offduty
i−1 ≤ roffduty

i ≤ roffduty
i−1 + xstart

i − xarrival
i for all 1 < i ≤ n (11.2)

r
offduty
i ≤ roffduty

i−1 + (1− zidle
i ) · thorizon for all 1 < i ≤ n (11.3)

r
offduty
i−1 + xstart

i − xarrival
i ≤ roffduty

i + zidle
i · thorizon for all 1 < i ≤ n (11.4)

p
offduty
1 = 0 (11.5)
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roffduty
n + dend

n · tday − xend
n ≥ qoffduty

n + toffduty (11.6)

Constraints (11.1) to (11.4) determine the value of roffduty
i considering that off-duty periods of less

than tidle are not counted. Constraint (11.5) initialises poffduty
1 and constraint (11.6) demands that the

accumulated amount of off-duty time until the end of the schedule plus the remaining time until the

end of the last day is at least qoffduty
n plus toffduty.

If darrival
i = dstart

i for some 1 ≤ i ≤ n then the value of qoffduty
i must have the same value as poffduty

i .

This is achieved by adding the following constraints to the formulation.

p
offduty
i ≤ qoffduty

i + (dstart
i − darrival

i ) · thorizon for all 1 ≤ i ≤ n (11.7)

q
offduty
i ≤ poffduty

i + (dstart
i − darrival

i ) · thorizon for all 1 ≤ i ≤ n (11.8)

If darrival
i < dstart

i for some 1 ≤ i ≤ n then the time between xarrival
i and xstart

i includes midnight.

If zidle
i = 0 then the amount of off-duty time on day darrival

i is determined by subtracting the amount

of off-duty between midnight and xstart
i from r

offduty
i . If zidle

i = 1 then the amount of off-duty time on

day darrival
i is roffduty

i . We add the following constraints to the formulation.

q
offduty
i ≤ roffduty

i + (darrival
i + 1− dstart

i ) · thorizon for all 1 ≤ i ≤ n (11.9)

r
offduty
i − (xstart

i − darrival
i · tday) ≤ qoffduty

i + (darrival
i + 1− dstart

i ) · thorizon for all 1 ≤ i ≤ n (11.10)

r
offduty
i ≤ qoffduty

i + (1− zidle
i ) · thorizon + (darrival

i + 1− dstart
i ) · thorizon for all 1 ≤ i ≤ n (11.11)

q
offduty
i ≤ roffduty

i −(xstart
i −darrival

i · tday)+zidle
i · thorizon+(darrival

i +1−dstart
i ) · thorizon for all 1 ≤ i ≤ n

(11.12)

We need the make sure that the accumulated amount of off-duty time on day darrival
i is at least toffduty.

This is achieved by adding the following constraints to the formulation.

p
offduty
i + toffduty ≤ qoffduty

i + (darrival
i + 1− dstart

i ) · thorizon for all 1 ≤ i ≤ n (11.13)

If darrival
i = dstart

i−1 for some 1 < i ≤ n then the value of poffduty
i must have the same value as qoffduty

i−1 .

This is achieved by adding the following constraints to the formulation.

p
offduty
i ≤ qoffduty

i−1 + (darrival
i − dstart

i−1) · thorizon for all 1 < i ≤ n (11.14)
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q
offduty
i−1 ≤ poffduty

i + (darrival
i − dstart

i−1) · thorizon for all 1 < i ≤ n (11.15)

If dstart
i−1 < darrival

i for some 1 < i ≤ n then the time between xstart
i−1 and xarrival

i includes midnight.

As no off-duty time is taken in this period poffduty
i must have the same value as roffduty

i−1 and we add the

following constraints to the formulation.

p
offduty
i ≤ roffduty

i−1 + (dstart
i−1 + 1− darrival

i ) · thorizon for all 1 < i ≤ n (11.16)

r
offduty
i−1 ≤ poffduty

i + (dstart
i−1 + 1− darrival

i ) · thorizon for all 1 < i ≤ n (11.17)

We need the make sure that the accumulated amount of off-duty time on day preceding darrival
i is at

least toffduty. This is achieved by adding the following constraints to the formulation.

q
offduty
i−1 + toffduty ≤ poffduty

i + (dstart
i−1 + 1− darrival

i ) · thorizon for all 1 < i ≤ n (11.18)

Eventually, we add the variable domains to the formulation.

p
offduty
i ∈ [0, thorizon] for all 1 ≤ i ≤ n (11.19)

q
offduty
i ∈ [0, thorizon] for all 1 ≤ i ≤ n (11.20)

r
offduty
i ∈ [0, thorizon] for all 1 ≤ i ≤ n (11.21)

The example illustrated in Figure 1 shows the values of roffduty
i , poffduty

i , and qoffduty
i resulting from

constraints (11.1) to (11.21).

The constraints on the minimum amount of break time on a day can be considered similarly to

the constraints on the minimum amount of off-duty time on a day. Break time can be scheduled

between xarrival
i and xrestbegin

i and between xrestend
i and xstart

i . We can demand that if darrival
i < dstart

i

then xrestbegin
i ≤ darrival

i · tday and xrestend
i ≥ darrival

i · tday. Otherwise, we can move some of the break

time scheduled before xrestbegin
i to after xrestend

i or vice versa without violating any other constraint.

Thus, we add the following constraints to the formulation.

x
restbegin
i ≤ darrival

i · tday + (darrival
i + 1− dstart

i ) · thorizon for all 1 ≤ i ≤ n (12.1)

darrival
i · tday ≤ xrestend

i + (darrival
i + 1− dstart

i ) · thorizon for all 1 ≤ i ≤ n (12.2)

In order to consider the constraints on the minimum amount of break time we introduce additional

variables rbreak
i , pbreak

i , and qbreak
i . rbreak

i represents the accumulated amount of break time until the
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start of the work at location i. pbreak
i and qbreak

i represent the accumulated amount of break time until

the end of the last day preceding darrival
i and dstart

i . We add the following constraints to the formulation.

rbreak
1 = xstart

1 (13.1)

rbreak
i−1 ≤ rbreak

i ≤ rbreak
i−1 + x

restbegin
i − xarrival

i + xstart
i − xrestend

i for all 1 < i ≤ n (13.2)

rbreak
i ≤ rbreak

i−1 + (1− zidle
i ) · thorizon for all 1 < i ≤ n (13.3)

rbreak
i−1 + x

restbegin
i − xarrival

i + xstart
i − xrestend

i ≤ rbreak
i + zidle

i · thorizon for all 1 < i ≤ n (13.4)

pbreak
1 = 0 (13.5)

rbreak
n + dend

n · tday − xend
n ≥ qbreak

n + tbreak (13.6)

Constraints (13.1) to (13.4) determine the value of rbreak
i considering that off-duty periods of less

than tidle are not counted. Constraint (13.5) initialises pbreak
1 and constraint (13.6) demands that the

accumulated amount of break time until the end of the schedule plus the remaining time until the end

of the last day is at least qbreak
n plus tbreak.

If darrival
i = dstart

i for some 1 ≤ i ≤ n then the value of qbreak
i must have the same value as pbreak

i .

This is achieved by adding the following constraints to the formulation.

pbreak
i ≤ qbreak

i + (dstart
i − darrival

i ) · thorizon for all 1 ≤ i ≤ n (13.7)

qbreak
i ≤ pbreak

i + (dstart
i − darrival

i ) · thorizon for all 1 ≤ i ≤ n (13.8)

If darrival
i < dstart

i for some 1 ≤ i ≤ n then the time between xarrival
i and xstart

i includes midnight.

If zidle
i = 0 then the amount of break on day darrival

i is determined by subtracting the amount of break

between xrestend
i and xstart

i from rbreak
i . If zidle

i = 1 then the amount of off-duty time on day darrival
i is

rbreak
i . We add the following constraints to the formulation.

qbreak
i ≤ rbreak

i + (darrival
i + 1− dstart

i ) · thorizon for all 1 ≤ i ≤ n (13.9)

rbreak
i − (xstart

i − xrestend
i ) ≤ qbreak

i + (darrival
i + 1− dstart

i ) · thorizon for all 1 ≤ i ≤ n (13.10)

rbreak
i ≤ qbreak

i + (1− zidle
i ) · thorizon + (darrival

i + 1− dstart
i ) · thorizon for all 1 ≤ i ≤ n (13.11)

qbreak
i ≤ rbreak

i −(xstart
i −xrestend

i )+zidle
i ·thorizon+(darrival

i +1−dstart
i )·thorizon for all 1 ≤ i ≤ n (13.12)
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We need the make sure that the accumulated amount of break time on day darrival
i is at least tbreak. This

is achieved by adding the following constraints to the formulation.

pbreak
i + tbreak ≤ qbreak

i + (darrival
i + 1− dstart

i ) · thorizon for all 1 ≤ i ≤ n (13.13)

If darrival
i = dstart

i−1 for some 1 < i ≤ n then the value of pbreak
i must have the same value as qbreak

i−1 .

This is achieved by adding the following constraints to the formulation.

pbreak
i ≤ qbreak

i−1 + (darrival
i − dstart

i−1) · thorizon for all 1 < i ≤ n (13.14)

qbreak
i−1 ≤ pbreak

i + (darrival
i − dstart

i−1) · thorizon for all 1 < i ≤ n (13.15)

If dstart
i−1 < darrival

i for some 1 < i ≤ n then the time between xstart
i−1 and xarrival

i includes midnight.

As no break time is taken in this period pbreak
i must have the same value as rbreak

i−1 and we add the

following constraints to the formulation.

pbreak
i ≤ rbreak

i−1 + (dstart
i−1 + 1− darrival

i ) · thorizon for all 1 < i ≤ n (13.16)

rbreak
i−1 ≤ pbreak

i + (dstart
i−1 + 1− darrival

i ) · thorizon for all 1 < i ≤ n (13.17)

We need the make sure that the accumulated amount of break time on day preceding darrival
i is at least

tbreak. This is achieved by adding the following constraints to the formulation.

qbreak
i−1 + tbreak ≤ pbreak

i + (dstart
i−1 + 1− darrival

i ) · thorizon for all 1 < i ≤ n (13.18)

Eventually, we add the variable domains to the formulation.

pbreak
i ∈ [0, thorizon] for all 1 ≤ i ≤ n (13.19)

qbreak
i ∈ [0, thorizon] for all 1 ≤ i ≤ n (13.20)

rbreak
i ∈ [0, thorizon] for all 1 ≤ i ≤ n (13.21)

The example illustrated in Figure 1 shows the values of rbreak
i , pbreak

i , and qbreak
i resulting from con-

straints (13.1) to (13.21). With (1) to (13) we have a mixed integer programming formulation of the

Canadian minimum duration truck driver scheduling problem.
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4 Dynamic Programming

The CAN-MDTDSP defined by (1) to (13) can be solved using any mixed integer programming

solver. However, as Section 5 will reveal, the computational effort is extensive. Instead of solving

the CAN-MDTDSP using a mixed integer solver we can using dynamic programming. Goel and

Rousseau (2011) present a dynamic programming approach for truck driver scheduling in Canada.

In the Canadian truck driver scheduling problem studied by Goel and Rousseau (2011) each location

is associated a single time window and truck drivers may take rest periods everywhere and not only

at customer locations and parking lots. The duration of schedules is not considered at all. Instead

the goal is to determine whether a sequence of customer locations can be visited within their time

windows without violating Canadian driver regulations. In fact the dynamic programming appproach

by Goel and Rousseau (2011) imposes stricter constraints than the regulation. An additional constraint

is imposed and exploited which demands that between two rest periods of 8 consecutive hours, the

accumulated amount of on-duty time and off-duty time of less than 30 minutes does not exceed

tday − toffduty. Furthermore, it is assumed that all parameters representing time values are a multiple

of 15 minutes.

The dynamic programming approach is fairly complicated and a detailed description would go

beyond the scope of this paper. The fundamental idea of the dynamic programming approach is to

take an initially empty schedule and use different operators to transform this schedule into a sched-

ule satisfying the constraints of the problem. Three types of operators are used. The first operator

appends a driver activity with one of the following five types DRIVE, WORK, REST, BREAK, and

IDLE. Activities of type DRIVE represent driving time, activities of type WORK represent time in

which the driver is conducting stationary work, activities of type REST represent periods of at least

8 consecutive hours of off-duty time, activities of type BREAK represent other off-duty periods of at

least 30 minutes duration, and activities of type IDLE represent off-duty periods of less than 30 min-

utes duration. The second and third operator increase the duration of the last period of type REST

or BREAK. With these operators the dynamic programming approach generates a large set of alter-

native schedules in order to guarantee that a feasible schedule is found if one exists. To reduce the

computational effort the approach uses dominance criteria to discard as many schedules as possible.
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In order to be able to adopt this dynamic programming approach for the problem variant studied in

this paper we need to be able to consider multiple time windows. The approach can be modified in a

way that for each of the time window a different schedule is generated. To ensure that rest periods are

only taken at customer locations or parking lots, the dynamic programming approach can be modified

in such a way that if a driving period can not be fully scheduled due to rest requirements, all rest

required is scheduled before the driving period. With these modifications we can determine whether

a feasible solution exists for the problem variant studied in this paper. Note that we assume that rest

periods may be taken immediately after completion of the work at a customer location. For hours of

service regulations in the United States and the European Union, Goel (2011) shows in detail how

the specific problem characteristics of this paper can be considered within a dynamic programming

approach for truck driver scheduling.

As we will see, the schedules generated using the dynamic programming approach have a poor

quality and the total duration of the schedule is significantly larger than necessary. However, we can

also use this approach to minimise schedule durations. Each schedule generated by the approach

has different characteristics which determine the sequence of operator moves that can be applied. A

core feature of the approach is to discard schedules which are dominated, i.e. a schedule is discarded

if another schedule is found which has better characteristics. Unfortunately, the schedule duration

does not belong to the characteristics considered within the procedure for checking whether a sched-

ule is dominated or not. Modifying the dominance check in such a way that the schedule duration

is also considered, however, would significantly weaken the criteria for dominance and the modi-

fied approach would not be competitive in terms of computational effort. The completion time of

the schedule, however, is one of the characteristics considered within the dominance check and the

schedule with the smallest completion time is never discarded.

Suppose we have a schedule with minimal duration. Then the completion time of all other feasi-

ble schedules with the same start time is at least as high as for the schedule with minimal duration. If

we modify the problem instance in such a way that the first work must not start before the begin of the

schedule with minimal duration, then the dynamic programming approach generates this (or another)

feasible schedule with minimal duration. Figure 2 illustrates an iterative dynamic programming ap-

proach for minimising schedule durations using the adaptation of the dynamic programming approach
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presented by Goel and Rousseau (2011). The iterative dynamic programming approach begins with

solving the problems with the original parameters. If a feasible schedule is found the approach up-

dates the best solution value found so far. After cutting of the first 15 minutes from the set of feasible

start time at location 1, it continuous with solving the problem with the modified parameters. The

method terminates if no feasible schedule is found or if the set of feasible start times is empty.

1. best_duration =∞

2. while T1 6= ∅

(a) solve problem using the dynamic programming approach

(b) if no feasible schedule is found then stop

(c) let duration denote the minimal duration of the feasible

schedules found

(d) best_duration = min{best_duration, duration}

(e) cut off first 15 minutes of T1

Figure 2: The iterative dynamic programming approach

Note that the iterative dynamic programming approach does not depend on the regulation con-

sidered. Thus, it can be used to determine truck driver schedules with minimal duration whenever

a dynamic programming approach is available which finds a feasible schedule with minimal com-

pletion time. If the set of start times to be enumerated is relatively small and the search for feasible

schedules is fast, the iterative dynamic programming approach is a competitive alternative to solving

the problem using the mixed integer program.

5 Computational Experiments

This section reports on computational experiments conducted on the benchmark sets presented by

Goel (2011). All benchmark sets have a planning horizon starting on Monday 6.00 AM and ending

on Friday 8.00 PM. In all benchmark sets one hour of work time shall be conducted at each work

location in the tour and the driving time between two subsequent work locations is randomly set to a
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value between 1 and 10 hours. Assuming an average speed of 75 km/h, this implies that the distance

between two subsequent locations ranges from 75 km to 750 km. Drivers may take rest periods before

and after the work at any customer location. Furthermore, they may take rest periods at parking lots

which were randomly distributed on the trip from one work location to another. The minimum driving

time between parking lots is 15 minutes, the maximum driving time is 2 hours. In the first benchmark

set all locations have a single time window starting at some day in the planning horizon at 6.00 AM

and ending at 8.00 PM. In the second benchmark set all locations have two time windows: the first

starts at some day in the planning horizon at 6.00 AM and ends at 12.00 PM and the second starts at

2.00 PM and ends at 8.00 PM. In the third and fourth benchmark set the time windows in the first two

benchmark sets are repeated on two days.

Dynamic Programming Iterative Dynamic Programming Mixed Integer Programming

Time Windows Instances Feasible Avg. CPU Avg. Duration Avg. CPU Avg. Duration Avg. CPU Avg. Duration

(in ms) (in min) (in ms) (in min) (in ms) (in min)

1 day: 6-20 781 499 2.69 6417 232.90 5547 11569.90 5542

1 day: 6-12, 14-20 781 493 105.69 6441 6146.76 5564 8168.29 5560

2 days: 6-20 781 647 3.24 6456 584.07 5288 45282.72 5284

2 days: 6-12, 14-20 781 645 223.61 6480 23805.81 5288 36642.62 5285

Table 2: Results

Table 2 shows the results of computational experiments conducted on a personal computer with

an Intel 1.66 GHz CPU. Each benchmark set includes 1000 instances. 781 of these instances had an

accumulated amount of working of not more than 70 hours and were used for the experiments. It can

be seen that the duration of the schedules obtained using the iterative dynamic programming approach

and mixed integer programming formulation is significantly smaller than the duration of schedules

obtained by the dynamic programming approach. This shows that explicitly considering the objective

of minimising the duration of schedules can bring advantages in terms of vehicle utilisation and

labour costs. Exploiting this advantage comes at the cost of larger computational efforts. For the first

and third benchmark set the iterative dynamic programming approach stays well below one second

per instance and requires much smaller computation time than CPLEX 12 which was used for the

solving the mixed integer program. For the second and fourth benchmark set the computational effort

is still smaller compared to CPLEX 12, however, the difference is not as large. The lunch break

included in the second and fourth benchmark set increases the search space explored by the dynamic
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programming approach significantly. The average duration using the iterative dynamic programming

approach is slightly higher than the average duration obtained using the mixed integer programming

formulation. The reason for the higher values is that an additional restriction is considered within

the dynamic programming approach. The additional constraint which demands that between two rest

periods of 8 consecutive hours, the accumulated amount of on-duty time and off-duty time of less

than 30 minutes does not exceed tday − toffduty, appears to have very little impact on solution quality.

The slight increase in average duration can likely be justified by the significantly smaller computation

times.

6 Conclusions

This paper presents a mixed integer programming formulation for the Canadian minimum duration

truck driver scheduling problem which is the problem of determining a schedule complying with

Canadian hours of service regulations with minimal duration in which all work activities begin within

one of multiple time windows. Computational experiments demonstrate that the duration of schedules

can be significantly reduced compared to the duration of schedules obtained when simply searching

for feasible schedules. An iterative dynamic programming approach is presented which - at the cost

of a slight increase in schedule durations - requires significantly smaller computation time than using

CPLEX 12 for solving the mixed integer program.
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