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Abstract

Truck driver scheduling problems are important subproblems of real-life vehicle routing and

scheduling problems because rest periods required by government regulations have a significant

impact on travel and arrival times. Vehicle routes generated without considering these regula-

tions are often practically infeasible. This paper identifies common constraints imposed by hours

of service regulations world wide and presents a mixed integer programming formulation for a

variant of the truck driver scheduling problem in which truck drivers may only rest at customer

locations and at suitable rest areas. The objective of the problem is to find a feasible truck driver

schedule with minimal duration. The model presented in this paper is very flexible and can be

configured to consider different sets of rules imposed by government regulations and union con-

tracts. A dynamic programming approach is presented and its effectiveness is demonstrated for

working hour regulations in the United States and in the European Union.

Keywords: U.S. Hours of Service Regulations, Regulation (EC) No 561/2006, Multiple Time

Windows, Rest Areas, Vehicle Scheduling, Dynamic Programming

1 Introduction

In their efforts to increase road safety and improve working conditions of truck drivers, governments

world wide have implemented regulations constraining driving and working hours of truck drivers.

Compulsory breaks and rest periods mandated by hours of service regulations have a significant im-

pact on total travel times which are typically more than twice as long as the pure driving time required
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in long distance haulage. Ignoring compulsory breaks and rest periods when generating schedules for

truck drivers can lead to unrealistic expectations, large delays, and violations of driving and working

hour regulations. This results in poor working conditions of truck drivers, reduced road safety and

low customer satisfaction.

Looking at different hours of service regulations world wide, it can be observed that these regula-

tions typically impose limits on the amount of driving and working between rest periods and the time

that may elapse between rest periods of the same type (Federal Motor Carrier Safety Administration

2011, European Union 2006, Transport Canada 2005, National Transport Commission 2008a;b). In

some regulations, however additional differently structured rules must be complied with. In this pa-

per the most commonly found constraints imposed by hours of service regulations are modelled and

a generic mixed integer programming formulation for the problem of finding a truck driver schedule

with minimal duration which complies with these constraints is presented. The model can be con-

figured to consider different sets of constraints imposed by different hours of service regulations. In

many practical applications, in particular when motorways are used, rest periods cannot be taken any-

where. The model presented in this paper explicitly considers the location of rest areas. Therefore,

truck driver schedules satisfying the constraints of the model will be more realistic than schedules

generated by previous approaches assuming that rest periods can be taken anywhere.

A dynamic programming approach is presented for solving the problem described above. The

dynamic programming approach is very fast and its effectiveness is demonstrated for working hour

regulations in the United States and in the European Union.

The remainder of this paper is organised as follows. The next section summarises hours of service

regulations in the United States and the European Union. Section 3 gives an overview over related

work. In Section 4 the problem studied in this paper is formulated as a mixed integer program. In

Section 5 the dynamic programming approach is presented and in Section 6 it is shown how additional

rules can be considered. Section 7 presents computational experiments demonstrating the importance

of considering the location of rest areas and the effectiveness of the dynamic programming approach.

Section 8 concludes the paper.
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2 Hours of Service Regulations

2.1 United States

Present hours of service regulations imposed by the U.S. Department of Transportation are com-

prehensively described by the Federal Motor Carrier Safety Administration (2011). The regulation

distinguishes between on-duty time and off-duty time. On-duty time refers to all time a driver is work-

ing and includes driving activities as well as other work such as loading and unloading. Off-duty time

refers to any time during which a driver is not performing any work.

The regulation limits the maximum amount of accumulated driving time between two rest periods

to 11 hours. After accumulating 11 hours of driving, the driver must take a rest period of 10 consec-

utive hours before driving again. The regulation prohibits a driver from driving after 14 hours have

elapsed since the end of the last rest period. However, a driver may conduct other work after 14 hours

have elapsed since the end of the last rest period. The regulation also prohibits a driver from driving

after accumulating 70 hours of on-duty time within a week.

In July 2013 an additional rule will become effective which demands that a driver does not drive

after 8 hours have elapsed since the end of the last off-duty period of at least 30 minutes.

2.2 European Union

In the European Union, working hours of truck drivers are constrained by regulation (EC) No 561/2006

which distinguishes between four driver activities: rest periods, breaks, driving time, and other work.

Rest periods are longer periods during which a driver may freely dispose of her or his time. Breaks

are short periods exclusively used for recuperation during which a driver may not carry out any work.

Driving time refers to the time during which a driver is operating a vehicle and includes any time

during which the vehicle is temporarily stationary due to reasons related to driving, e.g. traffic jams.

Other work refers to any work except for driving and includes time spent for loading or unloading,

cleaning and technical maintenance, customs, etc.

The regulation demands that a driver takes a break of at least 45 minutes after accumulating four

and a half hours of driving. A rest period of at least 11 hours must be completed within each period
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of 24 hours after the end of the previous rest period. The accumulated driving time between two rest

periods must not exceed nine hours.

The regulation limits the amount of driving within a week to 56 hours and the accumulated amount

of driving and working in a week to at most 60 hours. Furthermore, a driver must not drive or work

after 144 hours have elpased since the begin of the work week.

The basic set of rules described above are sufficient to comply with Regulation (EC) No 561/2006.

There are several additional rules in Regulation (EC) No 561/2006 which are comprehensively dis-

cussed in Goel (2010). These additional rules give drivers more flexibility in scheduling breaks and

rest periods. Among them are the rules that breaks and rest periods may be taken in two parts. The

first part of a break period taken in two parts must have a duration of at least 15 minutes, the second

must have a duration of at least 30 minutes. The first part of a rest period taken in two parts must have

a duration of at least 3 hours, the second must have a duration of at least 9 hours. If a rest period is

taken in two parts, the second part must be completed within 24 hours after the end of the previous

rest period.

It must be noted that further rules are implemented into national law by all member states of the

European Union. These national laws include constraints outlined by Directive 2002/15/EC on the

maximum amount of work without a break and on the amount of night work. The directive is not a law

itself and the national laws have been differently implemented throughout Europe. A full coverage of

all rules is beyond the scope of this paper and is omitted here for the sake of conciseness.

3 Related work

Hours of service rules imposed by the U.S. Department of Transportation are first studied by Xu et al.

(2003) who present a column generation approach for combined vehicle routing and scheduling. They

conjecture that determining a minimal cost truck driver schedule for a given sequence of customer

locations is NP-hard in the presence of multiple time windows. Archetti and Savelsbergh (2009) study

a similar problem with single time windows and show that a feasible truck driver schedule complying

with U.S. hours of service regulations for a sequence of n locations to be visited can be found in

O(n3) time. Goel and Kok (2011) show that feasible schedules complying with U.S. hours of service
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regulations can be found in O(n2) time. Based on this approach Rancourt et al. (2010) present a tabu

search heuristic for combined vehicle routing and scheduling in the United States.

In December 2011, the Federal Motor Carrier Safety Administrations published new hours of

service regulations in the United States. The new regulations introduce additional break constraints

which were not included in the previous regulations. These additional break constraints will become

effective in July 2013 and are discussed in Goel (2012c).

Working hours of truck drivers in the European Union are controlled by Regulation (EC) No

561/2006. A first comprehensive model of the regulation is given by Goel (2010). An exact method

is presented which is guaranteed to find a truck driver schedule complying with the constraints of

the model if such a schedule exists. Following this work Drexl and Prescott-Gagnon (2010) present

a scheduling approach using the notion of resource extension functions. Goel (2009), Kok et al.

(2010b), and Prescott-Gagnon et al. (2010) present heuristic approaches for solving combined vehicle

routing and truck driver scheduling problems in the European Union. European Union regulations

are also considered within the works on rich vehicle routing problems presented by Zäpfel and Bögl

(2008), Bartodziej et al. (2009), Kok et al. (2010a) and Derigs et al. (2011).

Meyer (2011) and Kok et al. (2011) present mixed integer programming formulations for min-

imising the duration of truck driver schedules in the European Union. However, the model presented

by Meyer (2011) is flawed as the constraints of European Union regulations, which require that a rest

period is completed within 24 hours after the end of the previous rest period, are modelled in a way

demanding that at least k rest periods must be scheduled within k days since the start of the week. If

a rest period is scheduled earlier than required, this way of modelling does not guarantee that the next

rest period is completed within 24 hours after the end of the rest period. Therefore, some schedules

satisfying the constraints of the model may violate the regulation. The model presented by Kok et al.

(2011) focusses on a planning horizon of at most 13 hours (i.e. a working day). An extension for

planning horizons of multiple days is outlined, but the possibility of taking rest periods in two parts

is not considered and no computational experiments are presented for planning horizons of several

days. Although the model allows to take breaks in two parts, the possibility of taking the first part

of a break immediately after completing a break or rest period is not considered. This possibility,

however, may be necessary to find a feasible schedule (Goel 2010).
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Hours of service regulations in Canada and Australia comprise constraints similar to those in the

United States and the European Union, however, they also contain additional constraints having a

unique and different structure. The only works known to the author considering these regulations are

presented by Goel and Rousseau (2011) and Goel et al. (2012).

All of the above mentioned approaches are developed for a specific set of rules and each rule is

individually modelled. As no effort has yet been made to identify common characteristics of rules, a

new method is developed for each set of rules considered.

Except for the approach by Kok et al. (2011) all existing approaches for truck driver scheduling

assume that truck drivers may take rest periods anywhere. In this paper we assume like Kok et al.

(2011), that truck drivers may only take rest periods at customer locations and at suitable rest ar-

eas. The explicit consideration of locations suitable for a driver to take rest periods is particularly

important where there is a shortage of safe and secured rest areas. The European Economic and

Social Committee states that such a shortage is prevalent in the European Union and demands that

enough suitable parking areas must be made available along European highways (see European Union

(2007)). If the availability of suitable rest areas is ignored when generating truck driver schedules,

a driver required to take a rest period may not be able to find a suitable rest area and must continue

driving until such a rest area is found. This can result in excessive driving times and reduced road

safety.

4 Problem Formulation

This section presents a generic model for a variant of the truck driver scheduling problem which can

be configured to consider different hours of service regulations. In the problem variant studied in this

paper the location of suitable rest areas is explicitly considered and the goal is to find a truck driver

schedule with minimal duration. To provide a formal model of this problem let us consider a sequence

of n locations which shall be visited by a truck driver. At each location 1 ≤ i ≤ n some stationary

work of duration wi shall be conducted. This work shall begin within one of multiple disjunct time

windows. The number of time windows at location 1 ≤ i ≤ n shall be denoted by Ti. For each

1 ≤ τ ≤ Ti the τ th time window at location i shall be denoted by the interval [tmin
i,τ , t

max
i,τ ]. The driving
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time required for moving from location i to i + 1 shall be denoted by di,i+1. The time horizon shall

be denoted by thorizon. The minimum duration truck driver scheduling problem (MD-TDSP) is the

problem of determining a schedule complying with applicable legislation in which all work activities

begin within one of the corresponding time windows and which has the minimal duration, i.e. the

time between the begin of the first work and the end of the last work. As the sequence of locations to

be visited as well as the duration of work and the driving time between locations are fixed, the main

decisions to be made when solving the MD-TDSP are those regarding the type and duration of rest

periods at the different locations.

In this paper we assume that drivers may only take rest periods after arrival at a location and

before starting the work activity at the location. We will later see that the model presented in this

section can also be used if drivers may take rest periods after completing the work or at suitable rest

areas on the trip from one location to another.

In order to develop a generic model that can be used for different hours of service regulations

let R denote the set of different types of rest periods defined by the regulation considered. For each

r ∈ R let tr denote the minimum duration imposed by the regulation. LetC denote a set of constraints

imposed by the regulation and let C1, C2, C3, and C4 denote four subsets of C which will be defined

below. For each constraint c ∈ C let tc denote a limit imposed by the regulation and let Rc ⊆ R

denote the set of rest types a driver can take to reset the counter bounded by the limit tc.

Let C1 denote a set of constraints c which require that a driver may not continue driving after a

certain amount of time has elapsed since the end of the last rest period of type r ∈ Rc. Let C2 denote

a set of constraints c which require that a driver may not continue to work after a certain amount of

time has elapsed since the end of the last rest period of type r ∈ Rc. Let C3, C4 ⊆ C denote sets

of constraints c which limit the accumulated amount of driving or the accumulated amount of driving

and working in between rest periods of some rest of type r ∈ Rc. For each constraint c ∈ C3 ∪ C4

let δc denote a binary parameter indicating whether working periods in which the driver is not driving

are counted (δc = 1) for the constraint c or not (δc = 0).

In the remainder of this paper we will assume that

Rc
′ ⊆ Rc′′ or Rc

′′ ⊆ Rc′ for any c′, c′′ ∈ C1 ∪ C2. (A)
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That is, the constraints in C1 ∪ C2 can be ordered in a way that all rest periods resetting the time

elapsed with respect to the highest ordered constraints also reset the time elapsed with respect to the

lower ordered constraints. This assumption is not restrictive if constraints are similarly structured to

the constraints imposed by the regulations in the United States or the European Union regulations. In

these regulations a rest period can also be used to reset the constraints associated to breaks.

We can now provide a mixed integer programming formulation of the MD-TDSP. For each lo-

cation 1 ≤ i ≤ n the formulation comprises variables xi := (xarrival
i , xstart

i , xend
i ) representing the

arrival time, the start time, and the end time of the work at location i. Furthermore, the formulation

comprises for each location 1 ≤ i ≤ n the variables yi = (yi,τ )1≤τ≤Ti where yi,τ is a binary variable

indicating whether the τ th time window of location i is used (yi,τ = 1) or not (yi,τ = 0). Eventually,

the formulation comprises for each location 1 ≤ i ≤ n the variables zi = (zi,r)r∈R where zi,r is a

binary variable indicating whether a rest of type r is taken at location i (zi,r = 1) or not (zi,r = 0).

The MD-TDSP is

minimise

xend
n − xstart

1 (1)

subject to

xarrival
i +

∑
r∈R

trzi,r ≤ xstart
i for all 1 ≤ i ≤ n (2)

xstart
i + wi = xend

i for all 1 ≤ i ≤ n (3)

xend
i + di,i+1 = xarrival

i+1 for all 1 ≤ i < n (4)

Ti∑
τ=1

yi,τ = 1 for all 1 ≤ i ≤ n (5)

yi,τ t
min
i,τ ≤ xstart

i for all 1 ≤ i ≤ n, 1 ≤ τ ≤ Ti (6)

xstart
i ≤ thorizon − yi,τ (thorizon − tmax

i,τ ) for all 1 ≤ i ≤ n, 1 ≤ τ ≤ Ti (7)

xarrival
k − xstart

i ≤ tc + thorizon
k−1∑
j=i+1

∑
r∈Rc

zj,r for all 1 ≤ i < k ≤ n : dk−1,k > 0, c ∈ C1 (8)
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xend
k − xstart

i ≤ tc + thorizon
k∑

j=i+1

∑
r∈Rc

zj,r for all 1 ≤ i ≤ k ≤ n : wk > 0, c ∈ C2 (9)

k−1∑
j=i

dj,j+1+δc
k−1∑
j=i

wj ≤ tc+thorizon
k−1∑
j=i+1

∑
r∈Rc

zj,r for all 1 ≤ i < k ≤ n : dk−1,k > 0, c ∈ C3 (10)

k−1∑
j=i

dj,j+1 + δc
k∑
j=i

wj ≤ tc + thorizon
k∑

j=i+1

∑
r∈Rc

zj,r for all 1 ≤ i < k ≤ n : wk > 0, c ∈ C4 (11)

∑
r∈R

zi,r ≤ 1 for all 1 ≤ i ≤ n (12)

xi ∈ [0, thorizon]3, yi ∈ {0, 1}Ti , zi ∈ {0, 1}|R| for all 1 ≤ i ≤ n (13)

The objective function (1) is to minimise the duration between the start of the first work and the end

of the last work. Constraint (2) demands that the work at any location must not start before the arrival

plus any rest time. Constraint (3) demands that the work at any location i ends wi time units after

it starts. Constraint (4) demands that the arrival at a location equals the end time of the previous

location plus the required driving time. Constraint (5) demands that at any location exactly one of the

time windows is used. Constraints (6) and (7) are the time windows constraints. Constraints (8) and

(9) demand that the time elapsed since the end of the last rest in Rc is within the limits imposed by

the constraints c ∈ C1 and c ∈ C2. Constraints (10) and (11) demand that the accumulated amount

of driving and working without rest does not exceed the respective limit imposed by the constraints

c ∈ C3 and c ∈ C4. Note that constraints (8) to (11) can only be satisfied if dj,j+1 ≤ tc for all

1 ≤ i < n and c ∈ C. That is, the driving time between two subsequent locations must be small

enough such that the limits imposed by the regulation can be satisified. Constraint (12) demands that

at each location at most one rest period is scheduled. If we want to allow more than one rest period at

a location we can represent any combination of different rest types by an additional rest type which

is introduced to R. The variable domains are given by (13).

Let us now illustrate the constraints of the model for a planning horizon of one week and hours

of service regulations in the United States and the European Union.

Current regulations in the United States do not distinguish between different types of rest periods.

We have R = {rest} and trest = 10. The regulation prohibits a driver from driving after 14 hours
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have elapsed since the end of the last rest period. Thus, we have C1 = {elapsed}, telapsed = 14,

and Relapsed = {rest}. The regulation limits the maximum amount of accumulated driving time

between two rest periods to 11 hours. Furthermore, the regulation also prohibits a driver from driving

after accumulating 70 hours of on-duty time within a week. Thus, we have C3 = {weekly,daily},

tweekly = 70 and tdaily = 11, δweekly = 1 and δdaily = 0, and Rweekly = ∅ and Rdaily = {rest}

Furthermore, we have C2 = C4 = ∅.

When the new rules become effective in July 2013 we will have to distinguish between breaks and

rest periods. Therefore, we add the rest type “break” toR and set tbreak = 1
2 . Furthermore, we include

the constraint “elapsed_break” in C1 and set telapsed_break = 8, and Relapsed_break = {rest,break}.

Nothing else needs to be changed.

The basic set of rules in the European Union also distinguishes between rest periods and breaks.

We have R = {rest, break}, trest = 11, and tbreak = 3
4 . A rest period must be completed within

each period of 24 hours after the end of the previous rest period and no driving and working may be

conducted after 144 hours have passed since the begin of the work week. Thus, we have C1 = C2 =

{elapsed,week}, telapsed = 24− trest = 13, tweek = 144, and Relapsed = {rest} and Rweek = ∅. The

regulation demands that a driver takes a break or rest period after accumulating four and a half hours

of driving and that at most 9 hours of driving are conducted between two rest periods. Thus, we have

C3 = {daily, nonstop}, C4 = ∅, tdaily = 9, tnonstop = 41
2 , δdaily = δnonstop = 0, and Rdaily = {rest}

and Rnonstop = {rest,break}.

Similar to Prescott-Gagnon et al. (2010) we can configure the model in such a way that the con-

straints of Directive 2002/15/EC concerning the maximum amount of work without a break is com-

plied with. In the approach presented by Prescott-Gagnon et al. (2010) a driver must not accumulate

more than 6 hours of driving and working time without taking a break period. This constraint can be

easily modelled by adding the constraint “work” to C3 and C4 and by setting twork = 6, δwork = 1,

and Rwork = {rest, break}. As Directive 2002/15/EC comprises further rules which are differently

implemented throughout Europe we will not consider this extension in the remainder of this work.

Figure 1 illustrates a truck driver schedule which complies with the current US regulations. The

largest left hand side value of condition (8) for which the right hand side value is telapsed is achieved

for i = 1 and k = 4. As xarrival
4 −xstart

1 = 14−0 = 14 ≤ telapsed = 14, condition (8) is satisfied for all
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Figure 1: A truck driver schedule

1 ≤ i < k ≤ n with dk−1,k > 0, c ∈ C1. The largest left hand side value of condition (10) for which

the right hand side value is tdaily is also achieved for i = 1 and k = 4. As
∑3

j=1 dj,j+1+0·
∑3

j=1wj =

4 + 3 + 4 + 0 · (1 + 1 + 1) = 11 ≤ tdaily = 11, condition (10) is satisfied for all 1 ≤ i < k ≤ n and

c ∈ C3.

For the new hours of service regulations in the United States which become effective in July

2013, condition (8) is violated, because we have xarrival
3 − xstart

1 = 9 − 0 = 9 which is greater than

telapsed_break = 8.

The schedule violates European Union rules in several ways. We have xarrival
4 − xstart

1 = 14 −

0 = 14 which is greater than telapsed = 13 and thus condition (8) is violated. Furthermore, we

have
∑2

j=1 dj,j+1 + 0 ·
∑2

j=1wj = 4 + 3 + 0 · (1 + 1) = 7 and
∑3

j=1 dj,j+1 + 0 ·
∑3

j=1wj =

4 + 3 + 4 + 0 · (1 + 1 + 1) = 11. As these values exceed tnonstop = 41
2 and tdaily = 9, condition (10)

is violated. Lastly, we have xarrival
4 +

∑
r∈R t

rz4,r = 14 + 3
4 · 0 + 11 · 1 = 25 which is larger than

xstart
4 = 24 and thus condition (2) is violated.

The model only allows drivers to take rest periods after arrival at a location and before beginning

to work. If the driver may take rest periods after the completion of work activities, we can modify the

tour by adding a dummy location with zero working time and an unbounded time window immedi-

ately after each customer location. If the driver may take rest periods at suitable rest areas on the trip

from one location to another, we can similarly add dummy locations with zero working time and an

unbounded time window on the trip. In the latter case the driving time between customer locations

and rest areas must be set appropriately.

The MD-TDSP presented in this section can be solved by any mixed integer programming solver.

We will, however, see that the MD-TDSP can be solved much faster with the dynamic programming

approach presented in the next section. The dynamic programming approach, furthermore, has the
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advantage that it can be easily adapted in order to exploit the additional freedom in scheduling rest

periods resulting from rules not considered in the formulation presented in this section.

5 Solution Approach

This section presents a dynamic programming approach (see e.g. Dasgupta et al. 2007, chap. 6) for

solving the MD-TDSP for a tour of length n. The dynamic programming approach starts with a tour

of length j = 1 and determines a set of feasible solutions Sj = {(xi, yi, zi)1≤i≤j} for this tour. Then

it uses Sj to find a set of feasible solutions Sj+1 = {(xi, yi, zi)1≤i≤j+1}, increments j and repeats

this process until j = n.

Assume we have a feasible solution (xi, yi, zi)1≤i≤j ∈ Sj . For each combination of values of

yj+1 and zj+1 which satisfies (5) and (12) we can determine new time values xj+1 using the function

extend(·) given in Figure 2. The function determines the arrival time at location j + 1 by adding the

driving time to the end time of the previous location. The start time is set to the smallest value which

is not before the opening of the time window specified by yj+1 and which allows enough time to take

the rest specified by zj+1. The end time is the start time plus the duration of the work to be performed

at location j + 1.

1. xarrival
j+1 = xend

j + dj,j+1

2. xstart
j+1 = max

{
xarrival
j+1 +

∑
r∈R

trzj+1,r ,

Tj+1∑
τ=1

tmin
j+1,τyj+1,τ

}
3. xend

j+1 = xstart
j+1 + wj+1

4. return (xi, yi, zi)1≤i≤j+1

Figure 2: extend((xi, yi, zi)1≤i≤j , yj+1, zj+1)

If xstart
j+1 >

Tj+1∑
τ=1

tmax
j+1,τyj+1,τ the specified time window is violated. Otherwise, (xi, yi, zi)1≤i≤j+1

satisfies constraints (2) to (7) of the MD-TDSP. If (xi, yi, zi)1≤i≤j+1 violates constraints (10) or (11),

the rest pattern defined by (zi)1≤i≤j+1 is infeasible because the accumulated driving and working

time between rest periods exceeds the maximum allowed value. If constraints (2) - (7) and (10) - (13)
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are satisfied, we only need to check whether constraints (8) and (9) are satisfied or not. If constraints

(8) or (9) are violated, then the time that has elapsed between the start of the ith work activity and the

arrival at location j + 1, or the time that has elapsed between the start of the ith work activity and the

completion of work at location j + 1 exceeds tc for some i < j + 1 and c ∈ C1 ∪ C2. The time that

has elapsed can be reduced by increasing the start time of the ith work activity. If this can be done

without violating any of the other constraints a feasible solution can be obtained.

Let us now describe a method that can be used to increase the start time of some work activity in

order to achieve compliance with constraints (8) and (9). The method increase(·) given in Figure 3

takes a solution (xi, yi, zi)1≤i≤j , an index k < j and a value ∆ ≥ 0 and determines a new solution

in which the start time of the work at location k is increased by ∆. All time values before the start

time of the work at location k remain unchanged and all time values thereafter are increased by the

smallest amount possible.

1. for all 1 ≤ i < k do

x̄arrival
i = xarrival

i , x̄start
i = xstart

i , x̄end
i = xend

i

2. x̄arrival
k = xarrival

k , x̄start
k = xstart

k + ∆, x̄end
k = x̄start

k + wk

3. for all k < i ≤ j do

x̄arrival
i = x̄end

i−1 + di−1,i, x̄start
i = max{xstart

i , x̄arrival
i +

∑
r∈R

trzi,r}, x̄end
i =

x̄start
i + wi

4. return (x̄i, yi, zi)1≤i≤j

Figure 3: increase((xi, yi, zi)1≤i≤j , k,∆)

Let us now introduce some notation that will be used to determine the parameters given to the

method increase(·). For any solution s = (xi, yi, zi)1≤i≤j and any constraint c ∈ C1 ∪ C2 let us

denote with

kcs = max{k | ∃r ∈ Rc : zk,r = 1}

13



the index of the last location at which a rest period in Rc is taken. The accumulated amount of off-

duty time after conducting the stationary work at the location with index kcs is
j∑

i=kcs+1

(xstart
i − xarrival

i ).

This accumulated off-duty time includes for each location kcs < i ≤ j the amount of rest as required

by (zi)1≤i≤j . The off-duty time exceeding
∑

r∈R t
rzi,r at location i is not required by constraint (2).

Let us denote this unnecessary off-duty time with

lslack|c
s =

j∑
i=kcs+1

(
xstart
i − xarrival

i −
∑
r∈R

trzi,r

)
.

We can increase the start time of the work at location kcs by any value of not more than lslack|c
s with-

out violating constraints (8) and (9) and without increasing the end time of the work at location j.

Furthermore, let us denote with

lpush|c
s = min

kcs≤i≤j

{ Ti∑
τ=1

tmax
i,τ yi,τ − xstart

i +

i∑
i′=kcs+1

(
xstart
i′ − xarrival

i′ −
∑
r∈R

trzi′,r

)}
the largest amount by which the start time of the work at location kcs can be increased without pushing

any subsequent work out of the time window specified by (yi)1≤i≤j . If we increase the start time of

the work at location kcs by ∆ = min{lslack|c
s , l

push|c
s }, we can reduce tc by ∆ without violating time

windows. Note that the end time of the jth work is not increased as ∆ ≤ l
slack|c
s . Any larger increase

would either push one of the start times out of the specified time window or would increase the end

time of the work at location j.

The order of constraints c ∈ C1 ∪ C2 resulting from (A) coincides with the order of kcs. If c is

the constraint with the smallest kcs with min{lslack|c
s , l

push|c
s } > 0, we can increase the start time of

the work at location kcs by ∆ = min{lslack|c
s , l

push|c
s } without increasing tc

′
for any other constraint

c′ ∈ C1 ∪ C2. The method update(·) given in Figure 4 takes a solution s = (xi, yi, zi)1≤i≤j and

increases the start time of locations until lslack|c
s = 0 or lpush|c

s = 0 for all c ∈ C1 ∪ C2.

If the solution obtained by invoking the method update(·) satisfies (8) and (9), a feasible solution

is obtained. Otherwise, feasibility can not be achieved by further increasing start times because any

further increase would either violate time windows or would leave tc unchanged for any c ∈ C1∪C2.

Let us now present a solution approach for solving the MD-TDSP with the additional restriction

that (yi)1≤i≤n and (zi)1≤i≤n are fixed to specific values. Figure 5 outlines a dynamic programming
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1. s = (xi, yi, zi)1≤i≤j

2. while there is a c ∈ C1 ∪ C2 with min{lslack|c
s , l

push|c
s } > 0 do

(a) select c ∈ C1 ∪ C2 with min{lslack|c
s , l

push|c
s } > 0 which has the

smallest kcs

(b) s← increase(s, kcs,min{lslack|c
s , l

push|c
s })

3. return s

Figure 4: update((xi, yi, zi)1≤i≤j)

approach for this restricted problem. The approach starts by setting j = 1 and determines a solution

sj in which arrival time, start time and end time have the smallest possible values. Then it determines

a solution sj+1 by using the methods extend(·) and update(·). If sj+1 is feasible, the method

increments j and repeats the previous step. If a feasible solution sn is found the method terminates.

In any iteration the solution obtained must be checked for feasibility. After invoking the method

extend(·) constraints (7) to (11) may be violated. If constraint (7) is violated no feasible solution

exists because the specified time window is violated although the arrival time at the location is set to

the smallest possible value. If constraints (10) or (11) are violated no feasible solution exists because

the accumulated driving and working time between rest periods exceeds the maximum allowed value.

If constraints (8) or (9) are violated after invoking the method update(·) then no feasible solution

exists because tc exceeds the maximum allowed value for some c ∈ C1 ∪ C2 and can not be further

reduced. Thus, if no feasible solution is found in any iteration, then no feasible solution exists for

given (yi)1≤i≤n and (zi)1≤i≤n and the method is prematurely aborted.

The dynamic programming approach for the restricted problem finds a feasible solution for the

given values of (yi)1≤i≤n and (zi)1≤i≤n if such a solution exists. By definition of the approach

all arrival, start, and end times of a solution have the smallest possible values. The duration of a

solution obtained by the algorithm, however, may not be minimal. As (yi)1≤i≤n and (zi)1≤i≤n are

fixed, the start times at all locations are restricted to one of the time windows and the amount of

rest to be taken at any location i must be at least
∑
r∈R

trzi,r. Unnecessary off-duty times can be
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1. j = 1

2. xarrival
1 = 0, xstart

1 = max
{
xarrival

1 +
∑
r∈R

trz1,r ,

T1∑
τ=1

tmin
1,τ y1,τ

}
, xend

1 =

xstart
1 + w1

3. s1 = (x1, y1, z1)

4. while j < n do

(a) sj+1 = update(extend(sj , yj+1, zj+1))

(b) if sj+1 is infeasible then stop - no feasible solution exists for

(yi)1≤i≤n and (zi)1≤i≤n

(c) j ← j + 1

5. return sn

Figure 5: restrictedDP((yi)1≤i≤n, (zi)1≤i≤n)

removed from a solution by increasing the start time of the work at the first location. For the solution

s = (xi, yi, zi)1≤i≤n let

lslack∗
s =

n∑
i=2

(
xstart
i − xarrival

i −
∑
r∈R

trzi,r

)
denote the accumulated amount of off-duty time after start of the first work reduced by the minimum

amount of rest required. Furthermore, let

lpush∗
s = min

1≤i≤j

{∑
τ∈Ti

tmax
i,τ yi,τ − xstart

i +
i∑

i′=2

(
xstart
i′ − xarrival

i′ −
∑
r∈R

trzi′,r

)}
denote the maximum amount by which we can increase the start of the first work without pushing any

subsequent work out of the time window specified by (yi)1≤i≤n.

If s is a feasible solution obtained by the restricted dynamic programming approach, then s∗ =

increase(s, 1,min{lslack∗
s , l

push∗
s }) is feasible and has a duration which is min{lslack∗

s , l
push∗
s } smaller

than the duration of s. If lpush∗
s < lslack∗

s , then it is impossible to increase the start time of s∗ without

violating time window constraints and the start time of s∗ is therefore maximal given the values of
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(yi)1≤i≤n and (zi)1≤i≤n. As the end time is not increased, s∗ has the minimal duration of all feasible

solutions for the restricted problem. If lpush∗
s ≥ lslack∗

s , we have lslack∗
s∗ = 0 and the duration of the

solution is minimal because no unnecessary off-duty time is scheduled. Thus, for given (yi)1≤i≤n

and (zi)1≤i≤n the solution s∗ is an optimal solution of the restricted problem.

We can now formulate a dynamic programming approach for solving the (unrestricted) MD-

TDSP. The approach is given in Figure 6 and begins with a tour length of j = 1. It initialises

the sets of partial solutions S1 by determing a solution with minimal arrival, start, and end times

for the first location for each value of y1 and z1 satisfying conditions (5) and (12). As long as

j < n the approach computes new solutions for the tour of length j + 1 in the same way as the

restricted dynamic programming approach for each sj ∈ Sj and each value of (yi)1≤i≤j+1 and

(zi)1≤i≤j+1 satisfying conditions (5) and (12). All new solutions which are feasible are included

in the set Sj+1. If j < n then j is incremented and the previous steps are repeated. Otherwise, the

set Sn is returned. If Sn is empty the problem is infeasible. Otherwise, let s∗ denote the solution in{
increase(s, 1,min{lslack∗

s , lpush∗
s } | s ∈ Sn

}
which has the minimal duration. As each schedule in

this set has the minimal duration for specific values of (yi)1≤i≤n and (zi)1≤i≤n, and as all feasible

values of (yi)1≤i≤n and (zi)1≤i≤n are considered, the solution s∗ solves the MD-TDSP to optimality.

The approach may generate up to (|R| + 1)n ·
∏

1≤i≤n Ti different solutions, i.e. one solution

for each combination of (yi)1≤i≤n and (zi)1≤i≤n. Even if only one type of rest periods must be

considered and only one time window is associated to each location (i.e. |R| = 1, Ti = 1 for all

1 ≤ i ≤ n), the number of solutions generated by the algorithm may theoretically grow exponentially

with respect to the tour length n.

In order to reduce the computational effort required by the dynamic programming approach we

can remove in each iteration some of the solutions in Sj if we know that one of the remaining

solutions in Sj will eventually lead to an optimal solution if such a solution exists. A schedule

s̄ = (x̄i, ȳi, z̄i)1≤i≤j can be removed from Sj if another schedule s = (xi, yi, zi)1≤i≤j in Sj exists

with

xend
j ≤ x̄end

j , (14)

xend
j − xstart

kcs
− lslack|c

s ≤ x̄end
j − x̄start

kcs̄
− lslack|c

s̄ for all c ∈ C1 ∪ C2, (15)

xend
j − xstart

kcs
− lpush|c

s ≤ x̄end
j − x̄start

kcs̄
− lpush|c

s̄ for all c ∈ C1 ∪ C2, (16)
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1. Sj = ∅ for all 1 ≤ j ≤ n, j = 1

2. for all y1 and z1 satisfying (5) and (12) do

(a) xarrival
1 = 0, xstart

1 = max
{
xarrival

1 +
∑
r∈R

trz1,r ,

T1∑
τ=1

tmin
1,τ y1,τ

}
,

xend
1 = xstart

1 + w1

(b) S1 ← S1 ∪ {(x1, y1, z1)}

3. while j < n do

(a) for all sj ∈ Sj and all yj+1 and zj+1 satisfying (5) and (12) do

i. sj+1 = update(extend(sj , yj+1, zj+1))

ii. if sj+1 is feasible then set Sj+1 ← Sj+1 ∪ {sj+1}

(b) j ← j + 1

4. return Sn

Figure 6: DP()

j−1∑
i=kcs

di,i+1 + δc
j∑

i=kcs

wi ≤
j−1∑
i=kcs̄

di,i+1 + δc
j∑

i=kcs̄

wi for all c ∈ C3 ∪ C4, (17)

and

xend
j − xstart

1 − lslack∗
s ≤ x̄end

j − x̄start
1 − lslack∗

s̄ (18)

xend
j − xstart

1 − lpush∗
s ≤ x̄end

j − x̄start
1 − lpush∗

s̄ (19)

Because of (15) and (16) and min{lslack|c
s , l

push|c
s } = min{lslack|c

s̄ , l
push|c
s̄ } = 0 we have xend

j −

xstart
kcs
≤ x̄end

j − x̄start
kcs̄

for all c ∈ C1 ∪ C2. Therefore, and because of (14) and (17) we know that,

for given yj+1, zj+1, the solution obtained when extending s in the next iteration is feasible if the

solution obtained when extending s̄ in the next iteration is feasible. Conditions (14) and (17) remain

valid for the new solutions obtained. Furthermore, conditions (15) and (16) as well as conditions

(18) and (19) remain valid because of condition (14). Therefore, the solution obtained by extending

s can be transformed into a solution with the same or a smaller duration and conditions (14) to
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(19) remain valid. Thus, if s̄ can be extended to a feasible solution of the MD-TDSP, then s can

be extended to a feasible solution of the MD-TDSP with the same or a smaller duration. Although

we don’t know whether the theoretical complexity of the algorithm can be reduced by removing

unnecessary schedules, the computational experiments presented later show that the effort required

by this approach is substantially smaller than the effort required by CPLEX 12 for solving the mixed

integer program.

6 Extensions

It is obvious that the generic model presented in Section 4 cannot consider every rule that can possibly

be imposed on truck driver schedules. Canadian and Australian hours of service regulations, for

example, comprise additional constraints which are unique to these regulations. In Goel (2012a;b)

it is shown how the model presented in this paper can be extended by introducing these additional

constraints.

Although the model presented in Section 4 suffices to generate schedules complying with Reg-

ulation (EC) No. 561/2006, the optional rules of this regulation which allow taking break and rest

periods in two parts are not considered. These rules give additional flexibility when generating truck

driver schedules and can be easily considered in the dynamic programming approach.

According to the regulation, the first part of a rest period taken in two parts must have a duration

of at least 3 hours and the second part must have a duration of at least 9 hours. The second part

must be completed within 24 hours after the end of the previous rest period. In order to consider

this optional rule, we add a new rest type “shortrest” to R which represents the first part of a rest

taken in two parts. We set tshortrest = 3 and add “shortrest” to Rnonstop, because the short rest also

resets the accumulated amount of driving without a regular break or rest. Furthermore, we modify

the method extend(·) in such a way that after a short rest is scheduled (i.e. if zj+1,shortrest = 1)

then trest is set to 9 and telapsed is set to 24 − 9 = 15. By this the time required for the next long

rest period is appropriately reduced and the time that may elapse between two long rest periods is

appropriately increased. After scheduling the next long rest (i.e. if zj+1,rest = 1) the value of trest

is reset to 11 and telapsed is reset to 24 − 11 = 13. In certain cases it may make sense to schedule
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a short rest immediately after a long rest (see Goel (2010)). Therefore, let us also add another rest

type “rest-shortrest” to R and Rnonstop. The time required for taking a short rest immediately after

a long rest is trest-shortrest and is determined by trest + tshortrest = 14. Within the method the values of

trest, trest-shortrest, and telapsed are accordingly modified.

In order to appropriately modify the conditions used to remove schedules from a set Sj as de-

scribed at the end of the previous section, let us include the modified values of tr and tc in the

representation of a solution. That is, we represent a schedule s by a tuple ((x̄i, ȳi, z̄i)1≤i≤j , (tr)r∈R,

(tc)c∈C). A schedule s̄ = ((x̄i, ȳi, z̄i)1≤i≤j , (t̄
r)r∈R, (t̄

c)c∈C) can be removed from Sj if another

schedule s = ((xi, yi, zi)1≤i≤j , (t
r)r∈R, (t

c)c∈C) in Sj exists with (14) to (19) and

tr ≤ t̄r for all r ∈ R (20)

and

tc ≥ t̄c for all c ∈ C. (21)

Condition (20) demands that the required duration of any type of rest r ∈ R in s is not larger than

in s̄. Condition (21) demands that the limit given by c ∈ C in s is not smaller than in s̄. If these

conditions are satisfied we know that if s̄ can be extended to a feasible solution of the extension of

the MD-TDSP, then s can be extended to a feasible solution with the same or a smaller duration.

The dynamic programming approach can be similarly extended to consider the rules allowing to

take break periods in two parts. For this an additional break type tshortbreak as well as other reasonable

combinations of rests and breaks must be added and the method extend(·) must be appropriately

modified.

7 Computational Experiments

The approaches presented in this paper are evaluated on four randomly generated benchmark sets for

a planning horizon starting on Monday 0.00 and ending on Friday 23.59. In all benchmark sets one

hour of work time must be conducted at each work location in the tour and the driving time between

two subsequent work locations is randomly set to a value between 1 and 10 hours. Assuming an

average speed of 75 km/h, this implies that the distance between two subsequent locations ranges
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from 75 km to 750 km. Drivers may take rest periods before and after the work at any customer

location. Furthermore, they may take rest periods at rest areas which are randomly distributed on the

trip from one work location to another. The minimum driving time between rest areas is 15 minutes,

the maximum driving time is 2 hours. In the first benchmark set all locations have a single time

window starting at some day in the planning horizon at 6.00 and ending at 20.00. In the second

benchmark set all locations have two time windows: the first starts at some day in the planning

horizon at 6.00 and ends at 12.00 and the second starts at 14.00 and ends at 20.00. In the third and

fourth benchmark set the time windows used in the first two benchmark sets are repeated on two

days. Each benchmark set includes 1000 instances. 769 these instances have an accumulated amount

of driving and working of not more than 70 hours and were used for the set of rules applicable in

the United States. 471 of these instances have an accumulated amount of driving of not more than

56 hours and an accumulated amount of driving and working of not more than 60 hours and were

used for the set of rules applicable in the European Union. The instances used for the rules applicable

in the United States have between 27 and 81 customer locations and rest areas and the instances used

for the rules applicable in the European Union have between 27 and 69 customer locations and rest

areas.

In a first experiment the impact of the restriction that rest periods must only be taken at customer

locations or rest areas is made. For this purpose, the number of feasible solutions obtained for the

problem studied in this paper is compared with the number of feasible solutions obtained for the truck

driver scheduling problem in which rest periods may be taken anywhere. For this comparison we used

the method for truck driver scheduling in the United States presented by Goel and Kok (2011) and

the method for truck driver scheduling in the European Union presented by Goel (2010). As these

methods only focus on determining feasible schedules, the duration of the schedules generated by

these approaches is unnecessarily high. Table 1 gives the results of this experiments. In the table

the U.S. hours of service regulations are indicated by “US”. The basic European Union regulations

in which breaks and rest periods must not be split are indicated by “EU”. The extended dynamic

programming approach for European Union regulations, in which the optional rules allowing to take

breaks and rest periods in two parts are considered, is indicated by “EU*”. The additional restriction

that rest periods must only be taken at customer locations or rest areas has a significant impact for all
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benchmark sets and a significant share of the instances for which a feasible truck driver schedule is

found by the previous methods is infeasible if rest periods must only be taken at customer locations or

rest areas. It is interesting to see that the restriction has a much larger impact in the European Union

and more than a quarter of the truck driver schedules found is infeasible if rest periods must only be

taken at customer locations or rest areas. With a larger number of breaks and rest periods which must

be scheduled, the availability of suitable rest areas appears to be more important.

Rules Time Windows Instances Anywhere Rest Areas

US 1 day: 6-20 769 468 419

US 1 day: 6-12, 14-20 769 455 412

US 2 days: 6-20 769 595 529

US 2 days: 6-12, 14-20 769 587 526

EU 1 day: 6-20 471 174 125

EU 1 day: 6-12, 14-20 471 174 124

EU 2 days: 6-20 471 228 159

EU 2 days: 6-12, 14-20 471 228 155

EU* 1 day: 6-20 471 177 134

EU* 1 day: 6-12, 14-20 471 177 129

EU* 2 days: 6-20 471 236 178

EU* 2 days: 6-12, 14-20 471 232 169

Table 1: Number of instances for which a feasible solution can be found

In a second experiment the performance of the methods presented in this paper is compared. Ta-

ble 2 shows the results of the computational experiments conducted on a personal computer with an

Intel 2.00 GHz CPU. In the table the average time required for solving an instance and the maxi-

mum computation time over all instances per benchmark set are reported. It can be seen that the

dynamic programming approach requires significantly less average computation time than CPLEX

12 for all four benchmark sets and both the US and EU rules. Moreover, the maximum computation

time required by the dynamic programming approach is also significantly smaller than the average

computation time required by CPLEX 12 and the maximum computation time required by CPLEX

12 is prohibitively large if the problem is to be solved within an iterative approach for combined vehi-

cle routing and truck driver scheduling. Not surprisingly, the fastest computation times are achieved

for the first benchmark set in which all locations have a single time window. For US rules the dy-
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Rules Time Windows Instances Feasible Avg. Duration Avg. CPU Max. CPU Avg. CPU Max. CPU

(in min) DP (in ms) DP (in ms) CPLEX 12 (in ms) CPLEX 12 (in ms)

US 1 day: 6-20 769 419 5600 1 4 227 747

US 1 day: 6-12, 14-20 769 412 5626 2 5 238 769

US 2 days: 6-20 769 529 5448 5 9 521 1835

US 2 days: 6-12, 14-20 769 526 5456 9 16 643 2953

EU 1 day: 6-20 471 125 5601 8 29 305 1180

EU 1 day: 6-12, 14-20 471 124 5595 13 50 317 1211

EU 2 days: 6-20 471 159 5603 36 74 577 4533

EU 2 days: 6-12, 14-20 471 155 5580 57 143 747 21813

EU* 1 day: 6-20 471 134 5552 14 51 - -

EU* 1 day: 6-12, 14-20 471 129 5523 37 157 - -

EU* 2 days: 6-20 471 178 5593 89 197 - -

EU* 2 days: 6-12, 14-20 471 169 5548 215 473 - -

Table 2: Comparison of the approaches

namic programming approach only requires on average 1 millisecond whereas CPLEX 12 requires

more than two hundred times as much computation time. Interestingly, the average computation time

required by CPLEX 12 does not grow as much when changing the set of rules compared to the dy-

namic programming approach. However, the dynamic programming approach is still much faster

than CPLEX 12 for the rules in the European Union. The computation times required by the dynamic

programming approach for the extended EU rules in which breaks and rests may be taken in two parts

are a few times larger than those by the dynamic programming approach for the basic EU rules, but

are still smaller than those required by CPLEX 12 for the basic EU rules. No results are reported for

CPLEX 12 for the extended EU rules because it is yet not clear how the additional rules can be fully

incorporated into a mixed integer program. An interesting result is that considering the possibility of

taking breaks and rest periods in two parts, not only helps in finding a truck driver schedule complying

with EU regulations, but also allows to reduce schedule durations. The reason for this is that off-duty

times which are not long enough for taking a long break or rest can be used to take short breaks and

short rests. Therefore, otherwise unproductive off-duty times can be avoided and the driver requires

less break and rest times later on.

To further evaluate the performance of the dynamic programming approach “EU*”, we conducted

computational experiments on the instances used by Kok et al. (2011). These instances are obtained

23



from known solutions of the vehicle routing problem with time windows by interpreting the time

horizon as a period of 13 hours. Within the planning horizon of 13 hours no rest periods are required

and the scheduling problem reduces to the problem of scheduling break periods and deciding whether

these break periods are taken in two parts or not. Kok et al. (2011) report an average CPU time of 15

milliseconds for these instances on a computer with a 2.83 GHz processor. The maximum CPU time

required by the “EU*” approach was less than 2 milliseconds and thus remarkably smaller although

a slower computer was used and all possible combinations of break and rest periods are evaluated by

the “EU*” approach.

8 Conclusions

This paper studies the minimum duration truck driver scheduling problem (MD-TDSP) which is the

problem of determining a schedule complying with applicable legislation in which all work activities

begin within one of the corresponding time windows and which has the minimal duration. In the

MD-TDSP the truck driver may only take rest periods at customer locations or suitable rest areas.

Most previous approaches for truck driver scheduling allowed truck drivers to take rest periods any-

where. The consideration of the locations of suitable rest areas, however, is particularly important

if motorways are used and truck drivers must continue to drive until the next appropriate rest area is

reached.

A generic model is presented which can be configured in such a way that the constraints of the

current hours of service regulations in the United States, the new hours of service regulations in the

United States which will become effective in 2013, and the basic set of rules imposed by European

Union regulations are considered. Furthermore, the model can be used for other similarly structured

regulations and provides a good starting point for regulations containing differently structured addi-

tional constraints.

A dynamic programming approach is presented which solves the MD-TDSP in a small fraction of

time compared to the computation time required by one of the most advanced mixed integer program-

ming solvers. Computational efficiency is particularly important if the MD-TDSP is solved within

iterative methods for solving vehicle routing and scheduling problems where feasible truck driver
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schedules must be determined whenever the route of some vehicle is changed. The fast computation

times are achieved by removing some of the partial schedules constructed during the course of the

algorithm. If fast computation time are not required and if only those partial schedules are removed

which cannot be extended to an optimal solution, many alternative optimal solutions for a given tour

may be generated by the dynamic programming approach and truck drivers may be given the possi-

bility of selecting one of the optimal rest patterns that fits best to their individual preferences. Another

important characteristic of the dynamic programming approach is that it can be easily adapted to con-

sider additional rules not covered by the mixed integer programming formulation. This paper shows

how the optional rules in the European Union which allow taking breaks and rest periods in two parts

can be considered within the solution approach.
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