
Vol. 46, No. 3, August 2012, pp. 317–326
ISSN 0041-1655 (print) � ISSN 1526-5447 (online) http://dx.doi.org/10.1287/trsc.1110.0382

© 2012 INFORMS

Truck Driver Scheduling in the United States

Asvin Goel
Zaragoza Logistics Center, PLAZA, 50197 Zaragoza, Spain; and Applied Telematics/e-Business Group,

Department of Computer Science, University of Leipzig, 04109 Leipzig, Germany, agoel@zlc.edu.es

Leendert Kok
Algorithmic R&D, ORTEC, 2800 AL Gouda, The Netherlands, leendert.kok@ortec.com

The U.S. truck driver scheduling problem (US-TDSP) is the problem of visiting a sequence of � locations
within given time windows in such a way that driving and working activities of truck drivers comply with

U.S. hours-of-service regulations. In the case of single time windows it is known that the US-TDSP can be
solved in O4�35 time. In this paper, we present a scheduling method for the US-TDSP that solves the single time
window problem in O4�25 time. We show that in the case of multiple time windows the same complexity can be
achieved if the gap between subsequent time windows is at least 10 hours. This situation occurs, for example, if,
because of opening hours of docks, handling operations can only be performed between 8.00 a.m. and 10.00 p.m.
Furthermore, we empirically show that for a wide range of other problem instances the computational effort is
not much higher if multiple time windows are considered.

Key words : vehicle scheduling; U.S. hours-of-service regulations; multiple time windows
History : Received: June 2009; revisions received: August 2010, October 2010; accepted: June 2011. Published

online in Articles in Advance December 2, 2011.

1. Introduction
The Federal Motor Carrier Safety Agency has esti-
mated that truck driver fatigue is a factor in 15% of
large truck crashes. In November 2008, the Federal
Motor Carrier Safety Agency adopted current hours-
of-service regulations for truck drivers in the United
States; see Federal Motor Carrier Safety Administra-
tion (2008). These regulations are merely identical
with those adopted in 2003 and 2005, which were
both overturned by the U.S. Court of Appeals for
the D.C. Circuit. According to a survey conducted
by McCartt, Hellinga, and Solomon (2008), one out
of six truck drivers admits to having dozed at the
wheel in the month prior to the survey. This value has
significantly increased since the 2003 rule came into
effect. The same survey revealed that less than one
out of two truck drivers reported that delivery sched-
ules are always realistic. Truck drivers who reported
that they are sometimes or often given unrealistic
delivery schedules are approximately three times as
likely to violate the work rules as are drivers who
rarely or never have to deal with unrealistic delivery
schedules. In March 2009 a lawsuit was filed again
challenging the new regulations because of safety
concerns and the fear that the regulations promote
driver fatigue; see Stone et al. (2009). In a settle-
ment agreement, the Federal Motor Carrier Safety
Agency announced that it will reconsider and poten-
tially change the regulation. The current regulation,

however, will remain in effect during the rule-making
process.

One of the first research works explicitly consider-
ing break periods within vehicle routing and schedul-
ing is presented by Savelsbergh and Sol (1998), who
consider a problem in which lunch breaks and night
breaks must be taken within fixed time intervals.
Hours-of-service rules imposed by the U.S. Depart-
ment of Transportation are first studied by Xu et al.
(2003), who present a column generation approach for
combined vehicle routing and scheduling. They con-
jecture that determining a minimal-cost truck driver
schedule for a given sequence of customer locations
is NP-hard in the presence of multiple time windows.
Archetti and Savelsbergh (2009) study a similar prob-
lem with single time windows, i.e., where each loca-
tion has exactly one time window, and show that
truck driver schedules complying with U.S. hours-of-
service regulations for a sequence of � locations to be
visited can be found in O4�35 time. The approach pre-
sented by Archetti and Savelsbergh (2009) could be
used to determine truck driver schedules in the pres-
ence of multiple time windows by solving a single
time window problem for each combination of time
windows. However, if each of the � locations has �
time windows there are �� combinations of time win-
dows. Thus, knowing that truck driver schedules can
be determined in polynomial time in the single time
window case does not give any indication whether, in

317

Goel and Kok: Truck Driver Scheduling in the United States
318 Transportation Science 46(3), pp. 317–326, © 2012 INFORMS

the presence of multiple time windows, truck driver
schedules can be determined in polynomial time.

Recently, several works considering the gener-
ation of truck driver schedules complying with
European Union regulations have been presented.
However, none of these papers considers multiple
time windows. Goel (2009), Kok et al. (2010), and
Prescott-Gagnon et al. (2010) solve combined vehi-
cle routing and truck driver scheduling problems
in the European Union by heuristically determining
truck driver schedules. Goel (2010) presents the first
method that is guaranteed to find a truck driver
schedule complying with European Union regulation
if such a schedule exists. European Union regulations
are more complex than U.S. hours-of-service regula-
tion, because they require that in addition to rest peri-
ods, in which drivers can sleep, shorter breaks for
recuperation must be scheduled after four and a half
hours of driving. The provisions of the regulation con-
cerning rest periods, however, share some similarity
with U.S. hours-of-service regulations.

In this paper, we study the U.S. truck driver
scheduling problem (US-TDSP) with multiple time
windows, which is the problem of visiting a sequence
of � locations within given time windows in such
a way that driving and working activities of truck
drivers comply with U.S. hours-of-service regulations.
We provide a formal model and analyze some struc-
tural properties of the problem. We present a schedul-
ing method that is guaranteed to find feasible truck
driver schedules if such schedules exist. We show
that in the case of single time windows, this method
can solve the U.S. truck driver scheduling problem in
O4�25 time. Furthermore, we show that the case of
multiple time windows is not harder to solve if the
gap between these time windows is at least 10 hours.
This situation occurs, for example, if, because of open-
ing hours of docks, handling operations can only be
performed between 8.00 a.m. and 10.00 p.m. Further-
more, we empirically show that for a wide range of
problem instances that do not satisfy this property,
the computational effort required by our scheduling
algorithm does not increase significantly.

The remainder of this paper is organized as fol-
lows. Section 2 describes current hours-of-service
regulations imposed by the U.S. Department of
Transportation. In §3, a formal model of the US-
TDSP is given. Section 4 introduces conditions for
pseudofeasibility that relax the conditions for feasi-
bility presented in §3. This relaxation allows us to
myopically construct truck driver schedules without
considering future driver activities and constraints
imposed on them. Section 4, furthermore, gives dom-
inance criteria, which help us in reducing the number
of partial schedules that must be explored in order

to solve the US-TDSP. Normality conditions are pre-
sented, which guide us when solving the US-TDSP.
Section 5 presents a scheduling method that solves
the US-TDSP by constructing pseudofeasible sched-
ules satisfying these normality conditions. In §6, we
analyze the performance of the method. Finally, §7
concludes this paper.

2. U.S. Hours-of-Service Regulations
Present hours-of-service regulations imposed by the
U.S. Department of Transportation are comprehen-
sively described by Federal Motor Carrier Safety
Administration (2009). The regulation distinguishes
between on-duty time and off-duty time. On-duty time
refers to all time a driver is working, and includes
driving activities as well as other work such as load-
ing and unloading. Off-duty time refers to any time
during which a driver is not performing any work.

The regulation limits the maximum amount of
accumulated driving time to 11 hours. After accumu-
lating 11 hours of driving, the driver must be off duty
for 10 consecutive hours before driving again. In the
remainder of this paper we will denote a period of at
least 10 consecutive hours of off-duty time as a rest
period. Thus, a driver must not drive for more than
11 hours in between two rest periods.

The regulation prohibits a driver from driving after
14 hours have elapsed since the end of the last rest
period. However, a driver may conduct other work
after 14 hours have elapsed since the end of the last
rest period.

Further regulations prohibit driving after a driver
has accumulated 60 or 70 hours of on-duty time
within a period of 7 or 8 days. Furthermore, a driver
may restart counting duty times after taking 34 or
more consecutive hours off duty. Like Archetti and
Savelsbergh (2009), we will assume in the remainder
of this paper that no more than 60 or 70 hours of on-
duty time are assigned to a driver within the planning
horizon. Furthermore, we assume that, at the begin-
ning of the planning horizon, the driver returns from
a rest period that is long enough such that previous
driving and working activities do not have any influ-
ence on driving and working hours within the plan-
ning horizon.

3. The Truck Driver Scheduling
Problem

In this section, we describe the U.S. truck driver
scheduling problem with multiple time windows.
Let us consider a sequence of locations denoted by
n11n21 0 0 0 1n� that will be visited by a truck driver. At
each location n� some stationary work of duration w�

shall be conducted. This work shall begin within

Goel and Kok: Truck Driver Scheduling in the United States
Transportation Science 46(3), pp. 317–326, © 2012 INFORMS 319

one of multiple disjunct time windows. The num-
ber of time windows at location n� shall be denoted
by �� and the time windows by T 1

�1T
2
�1 0 0 0 1 T

��
� . Let

T� 2= T 1
� ∪ T 2

� ∪ · · · ∪ T
��
� denote the set of all feasible

start times at location n�. The (positive) driving time
required for moving from node n� to node n�+1 shall
be denoted by ��1�+1. The U.S. truck driver schedul-
ing problem is the problem of determining whether
driving and working hours of a truck driver can
be scheduled in such a way that all work activities
begin within one of the corresponding time windows
and that U.S. hours-of-service regulations are com-
plied with.

To give a formal model of the problem, let us
denote with DRIVE any period during which the driver
is driving, with WORK any on-duty time in which the
driver is not driving, with REST any period of 10 con-
secutive hours or more of off-duty time, and with
IDLE any other off-duty time.

A truck driver schedule can be specified by a
sequence of activities to be performed by the driver.
Let A 2= 8a = 4atype1 alength5 � atype ∈ 8DRIVE1WORK1REST1
IDLE91 alength > 09 denote the set of driver activities to
be scheduled. Let ��0�� be an operator that concate-
nates different activities. Thus, a10a20 · · · 0ak denotes a
schedule in which for each i ∈ 81121 0 0 0 1 k−19 activity
ai+1 is performed immediately after activity ai. For a
given schedule s 2= a10a20 · · · 0ak and 1 ≤ i ≤ k, let s11 i 2=
a10a20 · · · 0ai denote the partial schedule composed of
activities a1 to ai. Recall that we assume that at the
beginning of the planning horizon, the driver returns
from a rest period that is long enough that previous
driving and working activities do not have any influ-
ence on the driving and working hours within the
planning horizon. We will thus only consider sched-
ules s 2= a10a20 · · · 0ak which begin with a rest period
of at least 34 hours, i.e., atype

1 = REST and a
length
1 ≥ 34.

Table 1 gives an overview of the parameters
imposed by the regulation. We use the following nota-
tion for determining whether a schedule complies
with the regulation. For each schedule s 2= a10a20 · · · 0ak
with a

type
1 = REST we denote the completion time of the

schedule by lend
s , the time of completion of the last rest

period by llast_rest
s , and the accumulated driving time

since completion of the last rest period by ldrive
s . These

Table 1 Parameters Imposed by the Regulation

Notation Value Description

t rest 10 hours The minimum duration of a rest period
tdrive 11 hours The maximum accumulated driving time between two

consecutive rest periods
telapsed 14 hours The maximum time since the end of the last rest

period until which a driver may drive

values can be recursively computed during schedule
generation by

lend
s111

2= a
length
1 and lend

s0a 2= lend
s + alength3

llast_rest
s111

2= lend
s111

and

llast_rest
s0a 2=

{

lend
s0a if atype = REST1
llast_rest
s otherwise3

ldrive
s111

2= 0 and

ldrive
s0a 2=







0 if atype = REST1
ldrive
s + alength if atype = DRIVE1
ldrive
s otherwise0

For a given sequence of locations n11n21 0 0 0 1n� and
a schedule s = a10a20 · · · 0ak, let us denote with i4�5
the index in s corresponding to the �th stationary
work period, i.e., ai4�5 corresponds to the work per-
formed at location n�. Analogously, for each 1 < i ≤ k

with a
type
i = WORK let us denote with �4i5 the index

of the respective location in n11n21 0 0 0 1n�. With this
notation we can now give a formal model of the
problem.

The US-TDSP with multiple time windows is
the problem of determining for a given sequence
of locations n11n21 0 0 0 1n�, whether a schedule s 2=
a10a20 · · · 0ak with a

type
1 = REST and a

length
1 ≥ 34 exists that

satisfies
∑

i415≤j≤i4�5

a
type
j =DRIVE

a
length
j =

∑

1≤j≤k

a
type
j =DRIVE

a
length
j 1 (1)

a
length
i4�5 =w� for each �∈811210001�91 (2)

lend
s11i4�5−1

∈T� for each �∈811210001�91 (3)

∑

i4�5≤j≤i4�+15
a

type
j =DRIVE

a
length
j =��1�+1 for each �∈811210001�−191

(4)

ldrive
s11i

≤ tdrive for each 1<i≤k1 (5)

a
length
i ≥ trest for each 1<i≤k with a

type
i =REST1 (6)

lend
s11i

≤ llast_rest
s11i

+telapsed for each 1<i≤K

with a
type
i =DRIVE0 (7)

Condition (1) demands that all driving is con-
ducted between the first and the last work activ-
ity. Condition (2) demands that the duration of the
�th work activity matches the specified work dura-
tion at location n�. Condition (3) demands that each
work activity begins within one of the correspond-
ing time windows. Condition (4) demands that the
accumulated driving time between two work activi-
ties matches the driving time required to move from

Goel and Kok: Truck Driver Scheduling in the United States
320 Transportation Science 46(3), pp. 317–326, © 2012 INFORMS

t1
min t2

min t3
min t4

min t5
min t1

max t2
max t3

max t4
max t5

max

Time

RE
ST

WO
RK

1
2 h

DRIVE

1 h

ID
LE

1
2 h

WO
RK

1
2 h

DRIVE

1 h

ID
LE

1
2 h

WO
RK

1
2 h

DRIVE

1 h

ID
LE

1
2 h

WO
RK

1
2 h

DRIVE

1 h

ID
LE

1
2 h

WO
RK

1
2 h

RE
ST

WO
RK

1
2 h

DRIVE

1 h

REST

10 h

WO
RK

1
2 h

DRIVE

1 h

WO
RK

1
2 h

DRIVE

1 h

WO
RK

1
2 h

DRIVE

1 h

WO
RK

1
2 h

RE
ST

WO
RK

1
2 h

DRIVE

1 h

ID
LE

1
2 h

WO
RK

1
2 h

DRIVE

1 h

REST

10 h

WO
RK

1
2 h

DRIVE

1 h

WO
RK

1
2 h

DRIVE

1 h

WO
RK

1
2 h

RE
ST

WO
RK

1
2 h

DRIVE

1 h

ID
LE

1
2 h

WO
RK

1
2 h

DRIVE

1 h

ID
LE

1
2 h

WO
RK

1
2 h

DRIVE

1 h

REST

10 h

WO
RK

1
2 h

DRIVE

1 h

WO
RK

1
2 h

RE
ST

WO
RK

1
2 h

DRIVE

1 h

ID
LE

1
2 h

WO
RK

1
2 h

DRIVE

1 h

ID
LE

1
2 h

WO
RK

1
2 h

DRIVE

1 h

ID
LE

1
2 h

WO
RK

1
2 h

DRIVE

1 h

REST

10 h

WO
RK

1
2 h

Figure 1 Five Feasible Schedules for a Truck Driver Scheduling Problem with Five Locations

one location to the other. Condition (5) demands that
the maximum amount of driving between two rest
periods does not exceed the limit given by the reg-
ulation. Condition (6) demands that each rest period
has the minimum duration required by the regulation.
Condition (7) demands that no driving is conducted
after 14 hours have elapsed since returning from the
last rest period. In the remainder of this paper, we
will say that a schedule s 2= a10a20 · · · 0ak with a

type
1 =

REST and a
length
1 ≥ 34 is feasible if and only if it satisfies

conditions (1) to (7).
Figure 1 illustrates five different feasible schedules

for the truck driver scheduling problem given by
�= 5 and T� = 6tmin

� 1 tmax
� 7, ��1�+1 = 1, and w� = 1/2

for all 1 ≤ � ≤ 5. Each of these schedules has differ-
ent characteristics and different values for lend

s , llast_rest
s ,

and ldrive
s . Obviously, many other feasible schedules

exist for the truck driver scheduling problem. To effi-
ciently solve the truck driver scheduling problem, we
thus need to identify problem characteristics that help
us reducing the search space as much as possible.

4. Pseudofeasibility and Normality
For single time window truck driver scheduling prob-
lems considering European Union regulations, Goel
(2010) defined criteria for pseudofeasibility and a nor-
mal form that provides guidance when solving the
problem. In this section, we will adopt these criteria
and develop a normal form for truck driver schedules
for the U.S. truck driver scheduling problem. Furter-
more, we generalise the concepts of pseudofeasibil-
ity and the normal form to the case of multiple time
windows.

To be able to reduce the search space to schedules
in which each rest period has a duration of minimal
length, we replace constraint (7) of the US-TDSP by
a relaxed constraint (7′). The relaxed constraint will
guarantee that compliance with constraint (7) can be
achieved in a postprocessing step. To formulate the
relaxed constraint, we have to determine the amount
of time by which each rest period can be extended
without violating any other constraint of the truck
driver scheduling problem. For any schedule s let us
denote the accumulated slack time since completion
of the last rest period by lslack

s . This value constrains
the amount by which the duration of the last rest
period can be extended without increasing the com-
pletion time of the schedule. It can be recursively
computed by

lslack
s111

2= 0 and lslack
s0a 2=







0 if atype = REST1
lslack
s + alength if atype = IDLE1
lslack
s otherwise0

By extending the duration of the last rest period in the
schedule, the start times of subsequent work activi-
ties may be pushed to a later point in time. Thus, we
need to know by how much the duration of the last
rest period can be increased without violating time
window constraints. For the European Union truck
driver scheduling problem with single time windows,
Goel (2010) determined the maximum value by which
the rest period can be increased without violating
time window constraints. Any extension by a smaller
amount maintains compliance with time window con-
straints and any extension by a larger amount results

Goel and Kok: Truck Driver Scheduling in the United States
Transportation Science 46(3), pp. 317–326, © 2012 INFORMS 321

T1
1 T1

2 T2
1 T2

2T1
3

Time

REST

10 h

DRIVE

3 h

IDLE

2 h

WO
RK

1 h

DRIVE

3 h

IDLE

2 h

WO
RK

1 h

DRIVE

3 h

REST

13 h

DRIVE

3 h

WO
RK

1 h

DRIVE

3 h

ID
LE

1 h

WO
RK

1 h

DRIVE

3 h

REST

14 h

DRIVE

3 h

WO
RK

1 h

DRIVE

3 h

WO
RK

1 h

DRIVE

3 h

ls – ls = 11 ≤ t elapsedend last_rest

ls – ls = 12 ≤ telapsedend last_rest

ls – ls = 15 > telapsedend last_rest

ls –(ls + ls
extend) = 12 ≤ t elapsedend last_rest

Figure 2 Feasible and Pseudofeasible Schedules

in a violation of time window constraints. Further-
more, any extension of the last rest period increases
the start times of subsequent work activities by at
most the amount of the extension. For the problem
with multiple time windows studied in this paper,
this is no longer the case. Figure 2, which will be dis-
cussed in more detail later, illustrates an example in
which we can extend the last rest period in the last
schedule by up to three hours. If we extend the rest
period in the last schedule by three hours, the start
time of the first work activity is pushed to the end
of time window T 3

1 and the start time of the second
work activity is pushed to the beginning of time win-
dow T 2

2 . However, if we extend the rest period by
only one hour and one minute, the start time of the
first work activity must be increased by at least two
hours, i.e., to the beginning of time window T 3

1 , and
the start time of the second work activity must be
increased by three hours, i.e., to the beginning of time
window T 2

2 . Calculating and updating the maximum
amount by which the last rest period can be extended
can be a tedious task in the presence of multiple time
windows, because it may require examination of the
impact of an extension on the start times of all sub-
sequent work activities. A value that can be easily
calculated and updated during schedule construction
is the maximum amount by which the last rest period
can be extended without pushing the start time of any
subsequent work activity out of its current time win-
dow. Let us denote this value by l

push
s . For any sched-

ule s 2= a10a20 · · · 0ak, the last rest period in s can be
increased by lslack

s11 k−1
without increasing the start time of

activity ak because the amount of idle time preceding
the activity can be reduced by lslack

s11 k−1
. For any schedule

s 2= a10a20 · · · 0ak with a
type
k = WORK let us denote with us

the closing time of the corresponding time window
during which the work activity ak starts, i.e., us 2=
maxT j

�4k5, where j is the index with lend
s11 k−1

∈ T
j

�4k5. We
can further extend the last rest period by us − lend

s11 k−1

without pushing the start time of ak out of its current

time window. The value of l
push
s can thus be recur-

sively computed by

lpush
s111

2= � and

lpush
s0a 2=







� if atype = REST1

min8lpush
s 1 lslack

s +us0a − lend
s 9 if atype = WORK1

l
push
s otherwise0

The duration of the last rest period in schedule s may
be extended by

lextend
s 2= min8lslack

s 1 lpush
s 9

without violating time window constraints or increas-
ing the completion time. Now, let us replace condition
(7) of the US-TDSP by condition

lend
s11 i

≤ llast_rest
s11 i

+ lextend
s11 i

+ telapsed

for each 1 < i ≤ k with a
type
i = DRIVE1 (7′)

and let us say that a schedule s 2= a10a20 · · · 0ak with
a

type
1 = REST and a

length
1 ≥ 34 is pseudofeasible if and only

if it satisfies conditions (1) to (6) and (7′).
Figure 2 illustrates the idea behind replacing con-

dition (7) by condition (7’). The first schedule in Fig-
ure 2 is infeasible because the last driving activity fin-
ishes 15 hours after the end of the last rest period,
and thus condition (7) is violated. Because lslack

s = 4
and l

push
s = 3, we know that we can increase the last

rest period in the schedule by lextend
s = 3. The schedule

is pseudofeasible because condition (7’) is satisfied.
The second schedule in Figure 2 is a feasible sched-
ule obtained by increasing the duration of the last rest
period in the first schedule by lextend

s = 3 (and reducing
the duration of subsequent idle periods). By increas-
ing the duration of the last rest period, the arrival
time at the first location is increased to the end of time
window T 1

1 . Note that we can also extend the dura-
tion of the last rest period by a smaller value than
lextend
s = 3 to achieve feasibility. The increase, however,

Goel and Kok: Truck Driver Scheduling in the United States
322 Transportation Science 46(3), pp. 317–326, © 2012 INFORMS

must be at least lend
s − llast_rest

s − telapsed = 1 to achieve
compliance with condition (7). The third schedule in
Figure 2 is a feasible schedule that can be obtained
by increasing the duration of the last rest period by
four hours, i.e., a value larger than lextend

s = 3. In this
schedule the work activity at the first location can no
longer start within time window T 1

1 . By only consid-
ering extensions of a rest period that do not exceed
lextend
s we make sure that no extension pushes the start

time of some work activity from one time window to
the next.

Because lextend
s ≥ 0 for any feasible schedule s, we

know that each feasible schedule is pseudofeasi-
ble. Because we can transform every pseudofeasible
schedule into a feasible schedule by extending the
duration of rest periods, the US-TDSP is equivalent
to the problem of determining whether a pseudofea-
sible schedule s 2= a10a20 · · · 0ak with a

type
1 = REST and

a
length
1 ≥ 34 exists.

The advantage of searching for pseudofeasible
schedules is that we do not need to know the best
duration of rest periods during schedule generation.
Instead, we can start by scheduling rest periods that
are as short as possible. In a postprocessing step, the
duration of these rest periods can be extended to the
required length.

In general, the set of all pseudofeasible schedules is
too large to be enumerated. Let us now define crite-
ria indicating which schedules can safely be ignored
when solving the US-TDSP.

Definition. A schedule s′ dominates another sched-
ule s′′ if some schedule s̃′ exists such that s′0s̃′0s̃′′

is pseudofeasible for all s̃′′ for which s′′0s̃′′ pseudo-
feasible.

Thus, if the schedule s′′ is dominated by schedule s′

and a pseudofeasible schedule for tour n11n21 0 0 0 1n�

exists that begins with the activities in schedule s′′,
then there also exists a pseudofeasible schedule for
tour n11n21 0 0 0 1n�, which begins with the activities in
schedule s′. Therefore, s′′ is not required for solving
the US-TDSP. Criteria for dominance are given in the
following two lemmata.

Lemma 1. Let s′1 s′′ be pseudofeasible schedules for the
partial tour n11 0 0 0 1n� with 1 ≤ �< �. Schedule s′ domi-
nates s′′ if

lend
s′ ≤ lend

s′′ and ldrive
s′ ≤ ldrive

s′′ and

llast_rest
s′ + lslack

s′ ≥ llast_rest
s′′ + lslack

s′′ and

llast_rest
s′ + l

push
s′ ≥ llast_rest

s′′ + l
push
s′′ 0

Proof. If lend
s′ = lend

s′′ , any activity a that can be
appended to the schedule s′′ without violating con-
straints (1) to (6) and (7′) can be appended to the

schedule s′ without violating constraints (1) to (6)
and (7’). After appending a, the conditions of the
lemma equally hold for s′0a and s′′0a. Thus, any
sequence of activities that can be appended to s′′ can
be appended to s′ without violating the conditions
for pseudofeasibility. If lend

s′ < lend
s′′ we can set s̃′ 2=

4IDLE1 lend
s′′ − lend

s′ 5. We have lend
s′ 0s̃′ = lend

s′′ , ldrive
s′ 0s̃′ = ldrive

s′ ≤

ldrive
s′′ , llast_rest

s′ 0s̃′ + lslack
s′ 0s̃′ ≥ llast_rest

s′ + lslack
s′ ≥ llast_rest

s′′ + lslack
s′′ , and

llast_rest
s′ 0s̃′ + l

push
s′ 0s̃′ = llast_rest

s′ + l
push
s′ ≥ llast_rest

s′′ + l
push
s′′ . Thus, the

conditions of the lemma hold for s′0s̃′ and s′′. Domi-
nance of s′0s̃′ over s′′ can be shown analogously to the
first case. Thus, any sequence of activities that can be
appended to s′′ can be appended to s′0s̃′. �

Lemma 2. Let s′1 s′′ be pseudofeasible schedules for the
partial tour n11 0 0 0 1n� with 1 ≤ �< �. Schedule s′ domi-
nates s′′ if

lend
s′ + trest

≤ lend
s′′ 0

Proof. If lend
s′ + trest = lend

s′′ let s̃′ 2= 4REST, trest5. If
lend
s′ + trest < lend

s′′ let s̃′ 2= 4REST, trest5 · 4IDLE, lend
s′′ −

lend
s′ − trest5. Then, dominance of s′0s̃′ over s′′ can be

shown analogously to the previous lemma. �
To be able to efficiently solve the US-TDSP by

subsequently constructing pseudofeasible schedules
for partial tours n11 0 0 0 1n�, we now define sev-
eral normality conditions. For notational reasons, we
can require that each pseudofeasible schedule s =

a10a20 · · · 0ak satisfies the condition

for each 1 < i ≤ k2 a
type
i−1 6= a

type
i 0 (N1)

If we have a pseudofeasible schedule violating (N1),
we can simply transform the schedule into a pseud-
ofeasible schedule satisfying (N1) by merging all sub-
sequent activities of the same type.

We can demand that the duration of each rest
period is as short as possible, i.e., that any schedule
s = a10a20 · · · 0ak satisfies

for each 1<i≤k with a
type
i =REST2 alength

i = trest0 (N2)

Any schedule violating (N2) can be transformed by
shortening the rest period and inserting an idle period
of appropriate length. This reduces the time at which
the rest period ends, but increases the amount by
which the rest period can be extended by the same
value.

We can require that all driving time is conducted
as early as possible, i.e., that each schedule s =

a10a20 · · · 0ak satisfies

for each 1<i<k with a
type
i =REST and a

type
i+1 =DRIVE2

ldrive
s11i−1

= tdrive or lend
s11i−1

≥ llast_rest
s11i−1

+lextend
s11i−1

+telapsed0 (N3)

Goel and Kok: Truck Driver Scheduling in the United States
Transportation Science 46(3), pp. 317–326, © 2012 INFORMS 323

If a pseudofeasible schedule does not satisfy condi-
tion (N3), we can move some of the driving time just
before the rest period.

Because idle activities represent unproductive peri-
ods, they should only be scheduled if they are
required due to an early arrival at a work location.
We can demand that idle periods are only sched-
uled immediately before work periods, i.e., that each
schedule s = a10a20 · · · 0ak satisfies

for each 1<i≤k with a
type
i−1 =IDLE2 atype

i =WORK0 (N4)

If a pseudofeasible schedule does not satisfy condition
(N4), we can remove the idle activity and insert it
immediately before the next work period.

In the single time window problem studied by Goel
(2010), idle periods are only appended to a schedule
if the arrival at location � is not in T�. The duration of
the idle period is set to the smallest value allowing the
work activity to be scheduled in T�. In the US-TDSP
with multiple time windows we may have to sched-
ule idle periods even if the arrival time at location �
is in T�. We can, however, require that no idle period
is longer than required to reach the opening time of
one of the time windows, i.e., we can demand that
each schedule s = a10a20 · · · 0ak satisfies

for each 1<i≤k with a
type
i−1 =IDLE and a

type
i =WORK2

lend
s11i−1

∈
{

t � t=minT j

�4i511≤ j≤��4i5
}

0 (N5)

If a pseudofeasible schedule does not satisfy condition
(N5), we can reduce the length of the idle activity
period in such a way that the start time of the work

T1
1 T1

2 T1
3 T2

1 T2
2

Time

REST

10 h

DRIVE

3 h

IDLE

2 h

WO
RK

1 h

DRIVE

3 h

IDLE

2 h

WO
RK

1 h

DRIVE

3 h

ls = 25, ls = 4, ls = 3end slack push

ls = 28, ls = 7, ls = 3end slack push

ls = 25, ls = 4, ls = 5end slack push

ls = 28, ls = 7, ls = 5end slack push

ls = 28, ls = 7, ls = 7end slack push

REST

10 h

DRIVE

3 h

IDLE

2 h

WO
RK

1 h

DRIVE

3 h

IDLE

5 h

WO
RK

1 h

DRIVE

3 h

REST

10 h

DRIVE

3 h

IDLE

4 h

WO
RK

1 h

DRIVE

3 h

WO
RK

1 h

DRIVE

3 h

REST

10 h

DRIVE

3 h

IDLE

4 h

WO
RK

1 h

DRIVE

3 h

IDLE

3 h

WO
RK

1 h

DRIVE

3 h

REST

10 h

DRIVE

3 h

IDLE

6 h

WO
RK

1 h

DRIVE

3 h

ID
LE

1 h

WO
RK

1 h

DRIVE

3 h

Figure 3 Pseudofeasible Schedules in Normal Form

activity is set to the smallest possible value within
the same time window and insert an idle period of
appropriate length after the work period.

All schedules obtained by modifying a schedule as
described above are pseudofeasible, and the modified
schedule dominates the original schedule with respect
to the conditions of Lemma 1. Obviously, some of
the modifications may create a violation of another
normality condition. However, by iteratively trans-
forming a pseudofeasible schedule, we can achieve a
pseudofeasible schedule satisfying conditions (N1) to
(N5). We will say that a schedule satisfying (N1) to
(N5) is in normal form. Because we can transform any
pseudofeasible schedule into a pseudofeasible sched-
ule in normal form, the US-TDSP is equivalent to
the problem of determining whether a pseudofeasi-
ble schedule s 2= a10a20 · · · 0ak with a

type
1 = REST and

a
length
1 ≥ 34 exists, which is in normal form.

Figure 3 illustrates five pseudofeasible schedules
that are in normal form. The only difference in the
schedules is that the work activities begin in differ-
ent time windows and that a different amount of idle
time is scheduled before the work activities. We can
observe that the third schedule in Figure 3 dominates
the first schedule and the fifth schedule dominates the
second and the fourth schedule. If we increase the last
rest period in the third schedule by lextend

s , we obtain
the third schedule of Figure 2. Note that the start time
of the first work activity in the dominating sched-
ules is in a later time window than in the dominated
schedules. This illustrates that although it appears to
be attractive to schedule work activities as early as
possible, a later start time may be beneficial because it

Goel and Kok: Truck Driver Scheduling in the United States
324 Transportation Science 46(3), pp. 317–326, © 2012 INFORMS

allows the last rest in the schedule to be increased by a
larger value. The number of pseudofeasible schedules
in normal form may be thus be significantly higher
in the case of multiple time windows than in the case
of single time windows. In the next section we will
present a scheduling method that constructs pseud-
ofeasible schedules in normal form until the US-TDSP
is solved.

5. Scheduling Method
The normal form presented in the previous section
guides us in solving the US-TDSP. Because of (N3)
and (N4), each work activity must be followed by a
driving activity unless conditions (5) or (7’) do not
allow further driving. The duration of each driving
activity must be the minimum of the remaining driv-
ing time to the next location, the maximum amount
of driving that can be conducted with respect to con-
straint (5), and the maximum amount of driving that
can be conducted with respect to constraint (7’). If
the next work location is not reached after the end
of a driving period, a rest period must be scheduled
because of (N4). This rest period must have dura-
tion trest because of (N2). Because of (N1) and (N4),
the rest period must be followed by another driv-
ing period. When the next work location is reached
we have alternative possibilities of scheduling further
activities. If the next location is reached within one of
the time windows, the work activity can be appended
to the schedule. If the arrival time at the work loca-
tion increased by trest lies within one of the time win-
dows, a rest period of duration trest followed by the
next work activity can be appended to the schedule.
Furthermore, an idle period followed by the work
period may be appended to the schedule and a rest
period of duration trest followed by an idle period and
the work period may be appended to the schedule.
Because of (N5), the idle period must have a duration
such that the work begins at the start of one of its
time windows.

We can now formulate a scheduling method that
takes a set of pseudofeasible schedules in normal
form for a partial tour n11n21 0 0 0 1n� and extends each
schedule to construct pseudofeasible schedules in nor-
mal form for tour n11n21 0 0 0 1n�1n�+1. This process
is repeated until the US-TDSP for tour n11n21 0 0 0 1n�

is solved. Before invoking the scheduling method,
we set

S1 2=
{

s � s = 4REST1min T
j

1 504WORK1w151 1 ≤ j ≤ �1

}

and
S� 2= � for all 1 <�≤ �0

The method is then invoked with � = 1. Note, that
any other schedule for the initial tour n1 is domi-
nated by one of the �1 schedules in S1. The scheduling

method is illustrated in Figure 4. Within the schedul-
ing method, �s denotes for each partial schedule s
the remaining driving time required to reach the next
location n�+1. The scheduling method starts by setting
S 2=S�. Then it chooses a partial schedule s ∈S and
removes it from S. Now it determines the maximum
duration of the next driving activity. If this value,
which is denoted by ã, is larger than zero, a driving
period of duration ã is scheduled.

If ã = 0 or �s > 0, a rest period is required be-
fore another driving activity may be scheduled. The
method schedules a rest period of duration trest and
continues with determining the maximum duration
of the next driving activity. If �s = 0 after schedul-
ing a driving activity, the next location is reached.
The method creates a set S′ containing the schedule
determined so far and an additional schedule created
by appending a rest period. For each time window
in T�+1 and each schedule in S′ the method adds
the schedule to the set S′′ if its completion time is
within the time window. For each time window in
T�+1 and each schedule in S′ the method adds a new
schedule to the set S′′, which is generated by adding
some idle time to the schedule in S′ if its comple-
tion time is before the opening of the time window.
The method adds the work activity to each of these
copies and includes them in the set S�+1. If S = �,
the method terminates. Otherwise, the method con-
tinues by choosing the next partial schedule in S.

Note that if no dominated schedules are removed,
the method creates the same schedules that would
be generated by solving a single time window prob-
lem for all combinations of time windows. Without
removing dominated schedules from S�, the num-
ber of partial schedules generated by this approach
may grow exponentially. If we remove all domi-
nated schedules in S� each time before we invoke
the scheduling method we can, however, significantly
reduce the number of partial schedules that need to
be considered.

6. Performance Analysis
To analyze the performance of the algorithm, let us
partition each set S� into the two subsets:

S+

� 2= 8s ∈S� � ldrive
s > 09 and

S0
� 2= 8s ∈S� � ldrive

s = 090

The scheduling method starts with �S+

1 � = 0 and
�S0

1� = �1. In each iteration the method creates for
each schedule in S� at most ��+1 new schedules with
ldrive
s > 0 and at most ��+1 new schedules with ldrive

s = 0
to be included in S�+1. Thus, �S+

�+1� ≤ ��+1 · �S��

and �S0
�+1� ≤ ��+1 · �S��. For each time window T

j
�+1

with 1 ≤ j ≤ ��+1 there exists a schedule sj ∈ S0
�+1

Goel and Kok: Truck Driver Scheduling in the United States
Transportation Science 46(3), pp. 317–326, © 2012 INFORMS 325

[∆ > 0]

[�s = 0]

[else]

[else]

[else]

lextends + telapsed − lends �

s← s��DRIVE���

s← s��REST� trest�

� �=��

Choose s ∈� and set � ←�\�s�

� �=min��s� t
drive − ldrives , llast_rests +

� ′ = �s� s�	REST� trest
��� ′′ �=∅

for all 1≤ j ≤ ��+1 do:

� ′′ ←� ′′ ∪ �s � s ∈� ′� lends ∈ T
j
�+1�∪

�s�	IDLE�minT j
�+1 − lends
 � s ∈� ′� lends <minT j

�+1�

��+1 ←��+1 ∪ �s�	WORK�w�+1
 � s ∈� ′′�

�� =�

Figure 4 Scheduling Method

that dominates all other schedules in S0
�+1 in which

the 4�+ 15st work activity begins in T
j
�+1. Thus, after

removing dominated schedules we have �S0
�+1� ≤

��+1. Unless additional assumptions are made, we
doubt that a polynomial bound on the number of
schedules generated can be given.

In the case of single time windows, however, we
have �S+

1 � = 0, �S0
1� = 1, �S0

�+1� ≤ 1, and �S+

�+1� ≤

�S��. We can conclude that after removing dominated
schedules, we have �S�� ≤ � for each 1 ≤ � ≤ �.
Thus, the method generates at most

∑

1≤�≤�� non-
dominated schedules and has a worst-case complexity
of O4�25. Now, let us again have a look at Figure 1.
Each of the five schedules in Figure 1 is pseud-
ofeasible and in normal form, and none dominates
another. We can easily find other examples in which
for each subproblem with � ≤ � at least � nondomi-
nated pseudofeasible schedules in normal form exist.
Thus, the scheduling method is minimal because it
does not generate more schedules in each iteration
than required.

Let us now consider the US-TDSP with multiple
time windows that satisfy the following condition:

maxT j
� + trest

≤ min T j+1
�

for all 1 ≤�≤ � and 1 ≤ j < ��0

This condition states that in between subsequent time
windows of the same location there are at least
10 hours during which the work must not begin. This
situation occurs, for example, if, because of open-
ing hours of docks, handling operations can only be
performed between 8.00 a.m. and 10.00 p.m. Under
this condition, the US-TDSP with multiple time win-
dows can be solved without generating more non-
dominated schedules than in the single time window
case. The reason for this is that because of Lemma 2,
the schedule with the smallest completion time dom-
inates all schedules in which the last work activity
is scheduled in a subsequent time window. Thus, for
each location only one of the multiple time windows
is actually relevant.

Goel and Kok: Truck Driver Scheduling in the United States
326 Transportation Science 46(3), pp. 317–326, © 2012 INFORMS

To analyze the performance in the case where han-
dling activities must not be conducted during night or
lunch time, we conducted computational experiments
on several million instances in which between 1 and
10 time windows, each from 8.00 a.m. to 1.00 p.m. or
from 3.00 p.m. to 8.00 p.m., were associated to each
work location. The duration of each work activity was
set to w� = 1, and the driving time from one loca-
tion to another was set to ��1�+1 ∈ 84181121169. The
planning horizon was set to five days. The maximum
number of nondominated partial schedules generated
throughout the course of the algorithm was less than
twice as high in the case of two time windows com-
pared to the case of single time windows. Increasing
the number of time windows from 2 to 10 did not
bring a further increase in this number. We can thus
conclude that the running time of the algorithm does
not increase significantly for a wide range of problem
instances with multiple time windows.

7. Conclusions
This paper studies the U.S. truck driver scheduling
problem in which a sequence of � locations must be
visited within given time windows. In the case of sin-
gle time windows, Archetti and Savelsbergh (2009)
show that the problem can be solved in O4�35. We
present a scheduling method that in the case of sin-
gle time windows solves the problem in O4�25 time.
The method is minimal because it does not generate
more schedules in each iteration than required. Fur-
thermore, we show that in the case of multiple time
windows, we can also solve the US-TDSP in O4�25
time if the gap between subsequent time windows of
the same location is at least 10 hours. For problem
instances in which the gap between subsequent time
windows of the same location is less than 10 hours,

we empirically show that the computational effort is
not significantly higher.

It must be noted that the generalizations made in
this paper to consider multiple time windows can
also be adapted to the European Union truck driver
scheduling problem studied in Goel (2010). However,
no comparable complexity bound can be given due to
additional provisions in European Union regulations
that are not found in U.S. hours-of-service regulations.

References
Archetti, C., M. Savelsbergh. 2009. The trip scheduling problem.

Transportation Sci. 43(4) 417–431.
Federal Motor Carrier Safety Administration. 2008. Hours of service

of drivers. Federal Register 73(224) 69567–69586.
Federal Motor Carrier Safety Administration. 2009. Interstate

truck driver’s guide to hours of service. Accessed Octo-
ber 4, 2011, http://www.fmcsa.dot.gov/rules-regulations/
truck/driver/hos/fmcsa-guide-to-hos.pdf.

Goel, A. 2009. Vehicle scheduling and routing with drivers’ work-
ing hours. Transportation Sci. 43(1) 17–26.

Goel, A. 2010. Truck driver scheduling in the European Union.
Transportation Sci. 44(4) 429–441.

Kok, A. L., C. M. Meyer, H. Kopfer, J. M. J. Schutten. 2010. A
dynamic programming heuristic for the vehicle routing prob-
lem with time windows and European community social leg-
islation. Transportation Sci. 44(4) 442–454.

McCartt, A. T., L. A. Hellinga, M. G. Solomon. 2008. Work schedules
of long-distance truck drivers before and after 2004 hours-of-
service rule change. Traffic Injury Prevention 9(3) 201–210.

Prescott-Gagnon, E., G. Desaulniers, M. Drexl, L.-M. Rousseau.
2010. European driver rules in vehicle routing with time win-
dows. Transportation Sci. 44(4) 455–473.

Savelsbergh, M., M. Sol. 1998. DRIVE: Dynamic routing of inde-
pendent vehicles. Oper. Res. 46(4) 474–490.

Stone, J. L., S. M. Wolfe, J. Claybrook, J. P. Hoffa, J. Lannen, D. Izer.
2009. Letter sent on March 9, 2009 to Raymond H. LaHood,
Secretary of Transportation, U.S. Department of Transportation.
Accessed October 4, 2011, http://www.citizen.org/documents/
LahoodHOSLetter.pdf.

Xu, H., Z.-L. Chen, S. Rajagopal, S. Arunapuram. 2003. Solving a
practical pickup and delivery problem. Transportation Sci. 37(3)
347–364.

