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Abstract

We investigate a combined routing and scheduling problem for the maintenance of electricity

networks. In electricity networks power lines must be regularly maintained to ensure a high qual-

ity of service. For safety reasons a power line must be physically disconnected from the network

before maintenance work can be performed. After completing maintenance work the power line

must be reconnected. Each maintenance job therefore consists of multiple tasks which must be

performed at different locations in the network. The goal is to assign each task to a worker and to

determine a schedule such that the downtimes of power lines and the travel effort of workers are

minimized. For solving this problem, we combine a Large Neighborhood Search meta-heuristic

with mathematical programming techniques. The method is evaluated on a large set of test in-

stances which are derived from network data of a German electricity provider.
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1. Introduction

Availability of electric energy is a crucial factor of today’s industrialized economies and of the

living standard of every modern society. In order to provide electricity to the customers, dense

networks of power lines and transformer stations are established for connecting power plants to

businesses and households. The reliability of such networks is typically assessed by the System

Average Interruption Index (SAIDI). This index gives the average outage duration faced by cus-

tomers within a year. For example, the SAIDI-index for customers in Germany was 14.9 minutes in
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2010, corresponding to a 99.998% availability rate, see Bundesnetzagentur (2012). Clearly, main-

taining the power utilities is one of the keys for achieving such a reliable supply of electric energy.

A particular feature of electricity network maintenance is that a maintenance job can comprise

several interdependent tasks that occur at geographically dispersed locations. This is because the

affected part of a network has to be disconnected from the rest of the network before maintenance

work can be done. Figure 1 gives an example of such task-interdependencies. Here, the power

line that connects transformer stations TS1 and TS2 requires maintenance. For safety reasons,

the power line must first be turned off and physically disconnected from the network at both

transformer stations. Afterwards, the actual maintenance can be performed. Then, two more tasks

have to be performed at the transformer stations for bringing the power line back into service.

Obviously, the affected power line is unavailable from the begin of the first involved task until

the completion of the last involved task. The overall downtime of the asset can be minimized

by simultaneously disconnecting the power line at stations TS1 and TS2, performing the actual

maintenance task immediately after the power line is disconnected, and reconnecting the power

line immediately thereafter. As the disconnecting, reconnecting, and the actual maintenance task

TS1
TS2

TS3

TS6

TS4

TS5 TS7

TS8

transformer station 

power line requiring 
maintenance

Disconnect 
at TS1

Disconnect 
at TS2

Maintain 
power line

Reconnect 
at TS1

Reconnect 
at TS2

(b)

(a)

Figure 1: Part of a network (a) and interdependent tasks for maintaining power line TS1-TS2 (b).
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are to be performed at different locations minimal downtimes can only be achieved if different

workers are assigned to the different tasks and if all workers synchronize their activities.

The corresponding optimization problem that is addressed in this paper can be described as

follows. Given a set of maintenance jobs that have to be performed by a given set of workers

the problem is to find an assignment of tasks to workers and a schedule for performing the tasks

such that downtimes and travel effort are minimized. The paper’s contributions are to introduce

this optimization problem, to provide a corresponding mathematical formulation, and to present

various methods for its solution. The methods include local search techniques and a matheuris-

tic that combines a Large Neighborhood Search (LNS) meta-heuristic for the routing of workers

with mathematical programming techniques for the scheduling of tasks. We test the methods on

network data of a large electricity provider operating in central Germany.

The paper is organized as follows. In Section 2, we review the related literature. The prob-

lem of routing and scheduling workers for maintenance in electricity networks is then formally

described and mathematically modeled in Section 3. Section 4 presents the heuristic solution

methods that we have developed for solving the optimization problem. A comprehensive compu-

tational study is provided in Section 5. Section 6 concludes the paper.

2. Literature

Maintenance operations in electricity networks must be carefully planned to minimize the

impact on the users of the network. Planning and scheduling of preventive maintenance activities

is often viewed from a tactical perspective and maintenance activities are scheduled in such a way

that the cost and impact of preventive maintenance are as small as possible while minimizing the

likelihood that failures occur due to long periods without maintenance. Surveys of such models are

given by Percy (2008) and Budai et al. (2008). Papers addressing the interrelations of maintenance

planning and product warranty offered to customers are surveyed in Shafiee & Chukova (2013).

Contrasting such long-term maintenance issues, we focus on the operational decision level, i.e.

planning of the actual execution of maintenance activities. We assume that tactical maintenance

planning has already been conducted and, thus, it is known which maintenance activities need to

be performed within the planning horizon. Unlike Budai et al. (2006) who present a preventive
3



maintenance scheduling problem for railway maintenance in which the goal is to group together

different maintenance activities on the same railway link, we assume that this grouping of different

tasks into jobs is already given and that the main operational goal is to assign workers to the

different maintenance tasks in such a way that all jobs are performed at minimal travel costs

and job downtimes. Peng et al. (2011) study a railway track maintenance problem in which the

objective is to minimize travel costs of maintenance teams required to perform geographically

dispersed maintenance tasks. The duration of each maintenance job depends on the maintenance

team assigned to the job and the teams cannot be split. The problem studied in our paper differs

from their problem as we seek to minimize travel time and the time required for each maintenance

job. Furthermore, workers are assigned to individual tasks in our problem which allows them to

switch back and forth between different maintenance jobs.

If each maintenance job consists of exactly one task, the problem studied in this paper reduces

to a vehicle routing problem. Comprehensive surveys on the vehicle routing problem and some

of its most important variants are given in Toth & Vigo (2002). There are several generalizations

of the vehicle routing problem in which each transportation request consists of more than one

task. In the pickup and delivery problem (Parragh et al., 2008a;b) each transportation request

consists of exactly one pickup task and one delivery task. In the general pickup and delivery

problem (Savelsbergh & Sol, 1995) and the general vehicle routing problem (Goel & Gruhn, 2008)

transportation requests may include multiple pickup and delivery tasks. These problems have

in common that all tasks belonging to one transportation request must be executed by the same

vehicle. In the problem considered in our paper, however, tasks belonging to the same job can

be executed by different workers in parallel to reduce the job downtime. If tasks of the same job

can be assigned to different workers and if precedence relations exist for these tasks, the routes of

the workers must be synchronized. Routing problems with such synchronization requirements are

surveyed by Drexl (2012). However, a typical feature of these problems is that all tasks of a job

occur at the same location, see e.g. Kim et al. (2010). Hence, travel times between geographically

dispersed tasks and their impact on job durations are out of scope of these studies.

Scheduling multi-task jobs together with the objective of minimizing job durations is well

known in the field of resource-constrained project scheduling (Kolisch, 1996). Considering main-
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tenance jobs as projects and workers as resources, the problem investigated in our paper can be

seen as a resource-constrained multi-project scheduling problem as investigated for example in

Gonçalves et al. (2008). However, geographically dispersed tasks and routing decisions for work-

ers are not supported in this problem class. Such a feature is covered by the generalized multi-

project scheduling problem proposed in Krüger & Scholl (2009), where the time for moving re-

sources between tasks of a job is captured in the planning by sequence-dependent transfer times.

In this approach, due date related objectives are pursued and, thus, heuristics are proposed that

aim at starting jobs as early as possible. The objective in our problem is to minimize the downtime

of network assets, which calls for solution methods that can postpone start times of tasks if this

leads to shorter job durations. We will show that this is one of the main challenges encountered in

solving the optimization problem considered here.

Related studies are also found in the research field of workforce scheduling problems. These

problems mostly address the fulfillment of staff requirements by assigning workers to the work

shifts of a company (see the survey of Van den Bergh et al., 2013) but operational problems of

scheduling work jobs that are to be processed by a set of workers also exist. The objective of the

latter studies is typically to minimize the number of required workers and their travel effort, or to

maximize the number of tasks that can be processed within given time windows (Li et al., 2005,

Dohn et al., 2009, Cowling et al., 2006). The approaches often support different skills of workers

which must be considered, for example, in maintenance operations for telecommunication com-

panies studied by Cordeau et al. (2010). Multi-task jobs and the minimization of job durations is

out of scope of these problems.

The combined problem of routing workers and scheduling tasks for a setting with multi-task

jobs, dispersed task locations and the objective of minimizing traveling of workers and downtimes

of jobs has not been considered so far. Especially the application of such a problem in the field

of electricity network maintenance has merely been introduced in our previous study (Goel et al.,

2010), but models and solution methods for such problems are still lacking.
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3. The Network Maintenance Problem

We are given w workers who have to perform a set of maintenance jobs J within one work

shift. For each job j ∈ J let Tj denote the set of tasks belonging to the job and let T =
⋃
j∈J Tj

denote the set of all tasks. For the tasks belonging to job j ∈ J , let Pj ⊂ Tj × Tj denote a set of

precedence constraints. Each precedence constraint (τ, τ ′) ∈ Pj requires that task τ is completed

before task τ ′ is started. The set of all precedence constraints is denoted by P =
⋃
j∈J Pj .

All workers are homogeneous in a sense that each worker is able to perform each task and that

travel times, travel cost, and service times are identical for all workers. They are initially located

at a depot denoted by 0. With N = {0} ∪ T we denote the set of locations that are of relevance

for the problem and with A = N × N \ {(n, n) | n ∈ N} we denote the set of arcs connecting

pairs of locations. For each arc (n,m) ∈ A, let cn,m and dn,m denote the nonnegative cost and

Table 1: Notation used for modeling the planning problem.

Sets:
J set of all maintenance jobs,
Tj set of tasks belonging to job j ∈ J ,
T set of all tasks, T =

⋃
j∈J Tj ,

Pj set of precedence constraints among the tasks of job j, Pj ⊂ Tj × Tj ,
P set of all precedence constraints, P =

⋃
j∈J Pj ,

N set of nodes, N = {0} ∪ T ,
A set of arcs,

Parameters:
w number of available workers,
sn service time required by a worker to execute the task at node n ∈ N ,
dn,m duration for traveling along arc (n,m) ∈ A,
cn,m cost for traveling along arc (n,m) ∈ A,
cj cost per minute of downtime of job j,
λ objective function weight,
T planning horizon, i.e., the duration of the work shift,

Decision variables:
xn,m binary, 1 if any worker travels along arc (n,m) ∈ A,
tτ start time of task τ , tτ ≥ 0,
t−j earliest start time among the tasks belonging to job j ∈ J , t−j ≥ 0,
t+j latest completion time among the tasks belonging to job j, t+j ≥ 0.
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duration for having a worker travel from n to m. We assume that travel times fulfill the triangle

inequality. Fixed cost for each worker leaving the depot can be considered by including them into

the arc costs c0,n for all n ∈ T . At each node n ∈ T a service operation of duration sn > 0 must

be conducted. For the ease of notation we assume that s0 = 0, i.e. no work must be conducted at

the depot. All workers must have returned to the depot by the end of the planning horizon which

is denoted by T .

The main decisions to be made are the assignment of tasks to workers and the timing of the

tasks. To model the corresponding decisions, we denote with xn,m a binary variable that takes

value 1 if a worker travels on arc (n,m) ∈ A and with tτ a continuous variable representing the

start time of task τ ∈ T . For the ease of notation we assume that we can set t0 = 0, i.e. we assume

that all workers can leave the depot at the beginning of the planning horizon. From the start times

of the tasks, the start time of job j is determined by minτ∈Tj{tτ} and the completion time of the

job is determined by maxτ∈Tj{tτ+sτ}. We introduce for each job j ∈ J two continuous variables

t−j and t+j that indicate these start and completion times. The downtime of the network asset that

is shut down for performing job j can then be determined by t+j − t−j . For each job j ∈ J the

cost for each minute of downtime is denoted by cj . The objective of the optimization problem is

to minimize the weighted sum of downtime costs and travel costs. A parameter λ with 0 ≤ λ ≤ 1

is used to balance downtime and travel costs. The introduced notation is summarized in Table 1.

The joint optimization problem of determining work plans for the maintenance workers and of

scheduling the maintenance tasks is formulated as follows.

minimize λ
∑
j∈J

cj(t
+
j − t−j ) + (1− λ)

∑
(n,m)∈A

cn,mxn,m (1)

subject to ∑
(0,m)∈A

x0,m ≤ w (2)

∑
(n,m)∈A

xn,m = 1 for all n ∈ T (3)

∑
(n,m)∈A

xn,m =
∑

(m,n)∈A

xm,n for all n ∈ N (4)

tn + sn + dn,m ≤ tm +M(1− xn,m) for all n ∈ N ,m ∈ T \ {n} (5)
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tn + sn + dn,0 ≤ T for all n ∈ T (6)

t−j ≤ tτ for all j ∈ J , τ ∈ Tj (7)

t+j ≥ tτ + sτ for all j ∈ J , τ ∈ Tj (8)

tτ + sτ ≤ tτ ′ for all (τ, τ ′) ∈ P (9)

xn,m ∈ {0, 1} for all (n,m) ∈ A (10)

t−j , t
+
j ∈ [0, T ] for all j ∈ J (11)

tτ ∈ [d0,τ , T ] for all τ ∈ T (12)

t0 = 0 (13)

The objective (1) is to minimize the weighted sum of total downtime cost of the assets and total

travel cost of all workers. Constraint (2) ensures that no more than w workers leave the depot.

Constraint (3) demands that each maintenance task is performed exactly once. Constraint (4)

balances the flow of workers at the nodes of the network. Constraint (5) demands that the time

between visiting two nodes subsequently by the same worker is sufficient to allow the worker

performing the task at the first node and to travel to the geographical location of the second node.

In this constraint, M refers to a sufficiently large positive value, e.g. M = T . Constraint (6)

guarantees that all workers return to the depot no later than time T . Constraints (7) and (8) require

that no task belonging to a job begins before the start time of the job and that no task is completed

after the completion time of the job. Note that in any optimal solution of a problem with λ > 0

and a job j ∈ J with cj > 0, we have t−j = minτ∈Tj{tτ} and t+j = maxτ∈Tj{tτ + sτ}. Precedence

constraints are respected through (9). Domains of the decision variables are defined in (10) to (13).

Considering the special case of the problem with w = 1, |Tj| = 1 for all j ∈ J , sn = 0 for all

n ∈ N , T =∞, and λ = 0 the problem reduces to the traveling salesman problem which is known

to be NP-hard (Karp, 1972). Therefore, the problem studied in this paper is also NP-hard.

Example: We consider an illustrative example with three workers, three jobs J = {1, 2, 3},

and a planning horizon of T = 120 time units. Each job consists of five tasks and has the same

structure as the job illustrated in Fig. 1. The service times for disconnecting or reconnecting a

power line at a transformer station are 10 minutes and the actual maintenance operation requires
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Figure 2: Example.

60 minutes. For reasons of simplicity, travel times and cost are ignored here, i.e. dn,m = cn,m = 0

for all (n,m) ∈ A, and we focus on minimizing total downtime (λ = 1 and cj = 1 for all j ∈ J ).

Figure 2 illustrates an optimal solution to the problem. For each task τ ∈ T the service time

sτ is indicated by the label to the left of the node and the start time tτ and the corresponding

completion time tτ + sτ are indicated by the label to the right of the node. The routes of workers

are 0-6-2-1-3-4-0, 0-11-7-8-9-5-0, and 0-12-13-15-14-10-0. The resulting downtimes of jobs 1,

2, and 3 are 90, 80, and 90 time units, respectively. As tasks 1 and 2 as well as tasks 14 and

15 are in the route of the same worker, the downtimes of jobs 1 and 3 are 10 minutes higher

than the theoretical lower bound on the total downtime of these jobs which could be achieved if

more workers were available or if the planning horizon was larger. It must also be noted that the

optimal solution cannot be obtained by starting all tasks at their earliest possible start times. In this

example, tasks 6 and 7 could be started at times 0 and 10, respectively. However, the start times of

these tasks in the optimal solution are at time 20 because task 10 cannot be performed before time

90 and smaller start times of tasks 6 and 7 would lead to an increased downtime of job 2.
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4. Solution Approach

As the problem studied in this paper is NP-hard it is in general not practical to solve the

problem using a MIP-solver. In this section we present a solution approach based on decompo-

sition where heuristics are used for determining the values of the integer variables of the original

problem and linear programming (LP) is used for determining the values of the continuous vari-

ables of the original problem. Such a hybridized method is known as matheuristic, cf. Maniezzo

et al. (2009). It combines advantages of meta-heuristic search (i.e., quickly exploring different

areas of a solution space) with those of mathematical programming (i.e., solving subproblems to

optimality).

In the above example we observed that the best start time of a task depends on the start times

of other tasks. Thus, finding optimal start times for all tasks is not trivial even if the route of each

worker is known. Let us assume that the values of xn,m are fixed for all (n,m) ∈ A and that

the values satisfy constraints (2) to (4) and (10). In the following we will refer to such a variable

vector (xn,m)(n,m)∈A as a work plan. The problem of determining optimal start times for a given

work plan is

minimize
∑
j∈J

cj(t
+
j − t−j ) (14)

subject to

tn + sn + dn,m ≤ tm for all n ∈ N ,m ∈ T \ {n} : xn,m = 1 (15)

tn + sn + dn,0 ≤ T for all n ∈ T (16)

tτ + sτ ≤ tτ ′ for all (τ, τ ′) ∈ P (17)

tτ ∈ [d0,τ , T ] for all τ ∈ T (18)

t−j ≤ tτ for all j ∈ J , τ ∈ Tj (19)

t+j ≥ tτ + sτ for all j ∈ J , τ ∈ Tj (20)

t−j , t
+
j ∈ [0, T ] for all j ∈ J (21)

As this problem only contains continuous variables, linear constraints, and a linear objec-

tive function it can be solved using any linear programming solver. For any set of start times

(tτ )τ∈T satisfying constraints (15) to (18), we know that ((tτ )τ∈T , (t−j )j∈J , (t
+
j )j∈J ) with t−j =

10
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Figure 3: Overview of the solution approach.

minτ∈Tj{tτ} and t+j = maxτ∈Tj{tτ + sτ} for all j ∈ J is a feasible solution to the overall opti-

mization problem. Furthermore, this assignment of start and completion times of jobs results in the

smallest objective function value. In the remainder we will refer to a set of start times (tτ )τ∈T as a

schedule. We say that a schedule is feasible if and only if it satisfies constraints (15) to (18), and we

say that a schedule is optimal if and only if it is feasible and together with t−j = minτ∈Tj{tτ} and

t+j = maxτ∈Tj{tτ +sτ} for all j ∈ J is an optimal solution to the problem defined by (14) to (21).

A work plan (xn,m)(n,m)∈A satisfying constraints (2) to (4) and (10) is feasible if and only if a

feasible schedule exists for the work plan. The work plan is optimal if a feasible schedule exists

for the work plan and the costs defined by (1) are minimized when using the optimal schedule.

The network maintenance problem can thus be heuristically solved by iteratively generating

and modifying work plans, determining an optimal schedule for each work plan using an LP solver,

and by memorizing the best work plan found within the solution process. Figure 3 provides an

overview of the solution approach proposed in this paper. The method begins with an initialization

phase in which a first feasible solution is generated from scratch by using the construction method

described in Section 4.1. After construction, a hill climbing method (Section 4.2) is used to obtain

a locally optimal solution. In the improvement phase, the solution is partially destroyed and,

then, rebuilt using the same methods as in the initialization phase. How this is done is described

in Section 4.3. Within all building blocks of the resulting Large Neighborhood Search method,

feasibility of (partial) work plans and their associated schedules are determined using an evaluator,

e.g. a method using an LP solver for the scheduling problem described above. Different evaluators

are described in Section 4.4.
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4.1. Construction Method

In order to generate a work plan from scratch let us consider the relaxed problem obtained by

replacing constraint (3) with ∑
(n,m)∈A

xn,m ≤ 1 for all n ∈ T (22)

and let us say that (xn,m)(n,m)∈A satisfying constraints (2), (4), (10) and (22) is a partial work plan.

Feasibility of a partial work plan is defined analogously to feasibility of a work plan. However, in

order to determine a schedule for a partial work plan, we have to replace in the scheduling problem

defined by (14) to (21) the set of nodesN with the set of nodes containing only those tasks which

are already assigned to a worker.

The algorithm illustrated in Fig. 4 attempts constructing a feasible work plan x by iteratively

inserting tasks into a partial work plan until condition (3) is satisfied. For the ease of notation

we include the element x0,0 in the vector x. Within the course of the algorithm x0,0 indicates the

number of workers who are not assigned to any task. The construction method is invoked with

an initially empty work plan which is obtained by setting x0,0 = w and xn,m = 0 for all arcs

(n,m) ∈ A. Furthermore, one of the evaluators described in Section 4.4 is specified to be used to

assess the quality of (partial) work plans.

construct(x, evaluator)
1: for all j ∈ J do
2: while {τ ∈ Tj |

∑
(n,τ)∈A

xn,τ = 0} 6= ∅ do . Any unserved tasks remaining?

3: select τ ∈ Tj with
∑

(n,τ)∈A

xn,τ = 0 and
∑

(n,τ ′)∈A

xn,τ ′ = 1 for all (τ ′, τ) ∈ Pj;

4: set best :=∞;
5: for all (n,m) ∈ A ∪ {(0, 0)} with xn,m > 0 do
6: set x+ := x, x+n,m := x+n,m − 1, x+n,τ := 1, and x+τ,m := 1; . insert τ between n and m
7: if f(x+, evaluator) < best then
8: best := f(x+, evaluator) and x∗ := x+;
9: if best =∞ then stop; . no feasible insertion possible

10: set x := x∗;
11: return x;

Figure 4: Construction method.
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The algorithm iteratively selects the first unscheduled job j ∈ J from a list, removes it from

the list, and conducts the following steps. As long as there are tasks in Tj which are not yet as-

signed to a worker, the algorithm selects one such task for which all predecessor tasks are already

contained in the partial plan. The choice of the next task is realized by selecting the first unsched-

uled task in Tj from an ordered list which is generated in such a way that all predecessor tasks

have an earlier position in the list than their successors. For all arcs (n,m) ∈ A ∪ {(0, 0)} with

xn,m > 0 the algorithm inserts the task between n and m and determines whether the resulting

work plan x+ is feasible. The quality of all feasible work plans is determined using an evaluation

function f(·, ·). Different evaluation functions that can be used for this purpose are described in

Section 4.4. Each work plan showing an improvement is accepted as new work plan. If the task

cannot be inserted the algorithm terminates prematurely. Otherwise, it continues with inserting the

next task of the job, or, if no such task exists, with the next job. If all tasks of all jobs are inserted

the algorithm terminates and returns a feasible work plan.

Note that the evaluation of a partial work plan is not trivial because the exact downtimes of

jobs can only be determined if all their tasks are included in a plan. When trying to generate a

feasible work plan from scratch by subsequently inserting tasks, we must pay special attention to

the precedence constraints associated to tasks of the same job. If a task τ ∈ Tj is executed at

time tτ , all other tasks τ ′ ∈ Tj with (τ, τ ′) ∈ Pj must start at some time in [tτ + sτ , T ]. If tτ is

very large, it is unlikely that all subsequent tasks can be executed within the planning horizon. In

Section 4.4 we therefore not only present evaluators focusing on the objective function value, but

also an evaluator focusing on the likelihood that a feasible work plan can be found.

4.2. Hill Climbing

Depending on the evaluation function and the sequence in which jobs are selected for insertion,

the quality of work plans obtained by the construction method can vary. Given a feasible work

plan, we can improve its quality using the hill climbing method shown in Figure 5. The method

is invoked with a feasible work plan and an evaluator which can be different to the evaluator used

during construction. Note that like for the construction method we include x0,0 within the vector

x to indicate the number of workers who are not assigned to any task.
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hillclimbing(x, evaluator)
1: set T ∗ := T ;
2: while T ∗ 6= ∅ do
3: select τ ∈ T ∗ and set T ∗ := T ∗ \ {τ};
4: set best :=∞ and x′ := x;
5: let n and m denote nodes with x′n,τ = x′τ,m = 1;
6: set x′n,m := x′n,m + 1, x′n,τ := 0, and x′τ,m := 0; . remove τ from work plan
7: for all (n,m) ∈ A ∪ {(0, 0)} with x′n,m > 0 do
8: set x+ := x′, x+n,m := x+n,m − 1, x+n,τ := 1, and x+τ,m := 1; . insert τ between n and m
9: if f(x+, evaluator) < best then

10: set best := f(x+, evaluator) and x∗ = x+;
11: if x∗ 6= x do
12: set x := x∗ and T ∗ := T ; . new best solution restarts search
13: return x;

Figure 5: Hill climbing method.

The hill climbing method randomly selects a task and removes it from the work plan. Then it

searches for the best way to re-insert the task with respect to the evaluation function. If the best

re-insertion leads to a modified work plan, this modified work plan must be at least as good as the

previous one and replaces the latter. The process is repeated by selecting the next task until all

tasks have been removed and re-inserted without any improvement.

Within the hill climbing approach we know that any task which is removed from a feasible

work plan can be feasibly re-inserted - if necessary at the same position as before. Therefore, we

do not need to consider the likelihood that other tasks can be inserted and the evaluation function

used during hill climbing can focus on the costs of the solution.

4.3. Large Neighborhood Search

After construction and hill climbing, a locally optimal solution is found which may still be

of insufficient quality. To further improve solution quality we apply Large Neighborhood Search

(LNS). LNS attempts escaping from local optima by using large neighborhood moves that involve

numerous tasks, see Shaw (1997). The LNS algorithm for our problem is illustrated in Fig. 6.

The algorithm starts by generating an initial solution from scratch using the construction method.

Then, the solution quality is improved by applying hill climbing as described above. The resulting
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solution is iteratively improved by randomly removing a preset number of jobs and re-inserting

them using the construction method and, afterwards, by applying hill climbing. The algorithm

terminates when the number of iterations reaches a given limit. In each phase of the algorithm

evaluators with different focus on feasibility, solution quality, and computation speed are used to

obtain an overall efficient and effective algorithm.

4.4. Feasibility Check and Evaluation of Work Plans

To determine whether a given work plan is feasible we can use an LP solver to solve the

scheduling problem defined by (14) to (21). If a feasible schedule for the work plan exists the

solver will find the optimal schedule. Otherwise, it will terminate indicating that no feasible

schedule exists. The computational effort required by a general purpose linear programming solver

is, however, unnecessarily high if the main goal is to determine whether a work plan is feasible or

not.

We will now present a dynamic programming approach which can be used to quickly determine

whether a feasible schedule exists for a given work plan. Let us consider the auxiliary graph

containing nodes N and the arcs A′ := {(n,m) ∈ A | m 6= 0, xn,m = 1} ∪ P . The arcs in

the auxiliary graph represent the precedence relationships corresponding to the work plan and the

LNS(evaluator1, evaluator2, evaluator3, evaluator4, k, i)
1: set x0,0 := w and xn,m := 0 for all arcs (n,m) ∈ A;
2: set x := construct(x, evaluator1);
3: set x := hillclimbing(x, evaluator2);
4: determine optimal schedule for x and resulting objective function value;
5: while iteration counter ≤ i do
6: set x+ := remove(x, k); . Remove k jobs from work plan x
7: set x+ := construct(x+, evaluator3);
8: set x+ := hillclimbing(x+, evaluator4);
9: determine optimal schedule for x+ and resulting objective function value;

10: if x+ has better objective function value than x then
11: set x := x+;

12: return x;

Figure 6: Large Neighborhood Search.
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jobs. If the auxiliary graph contains a directed cycle the work plan is infeasible as precedence

constraints are violated. Otherwise, we can determine the earliest start time for each node by

iterating down a spanning tree starting from node 0. If the earliest start time at any node violates

constraint (16) or (18), no feasible schedule exists for the work plan. If constraints (15) to (18) are

satisfied for the earliest start time of each node, a feasible schedule is found.

check(x)
1: set A′ := {(n,m) ∈ A | m 6= 0, xn,m = 1} ∪ P;
2: set t0 := 0, N ∗ := {0};
3: while N ∗ 6= N do
4: if {m ∈ N \ N ∗ | n ∈ N ∗ for all (n,m) ∈ A′} = ∅ return false;
5: select m ∈ N \ N ∗ with n ∈ N ∗ for all (n,m) ∈ A′;
6: let n denote the node with xn,m = 1;
7: set tm := max{tn + sn + dn,m,max(n′,m)∈P{tn′ + sn′}};
8: if tm + sm + dm,0 > T return false;
9: set N ∗ := N ∗ ∪ {m};

10: return true;

Figure 7: Feasibility check.

The algorithm illustrated in Fig. 7 determines in |T | iterations whether the work plan repre-

sented by variables x is feasible or not. The algorithm begins by constructing the auxiliary graph

and by setting the start time at the depot to zero and by initializing the set N ∗ = {0} of visited

nodes. As long as there is a node in N which is not yet included in N ∗ the method iterates with

the following steps. First, it checks whether there is a node in N \ N ∗ for which all predecessor

nodes in the auxiliary graph are already included in N ∗. If no such node exists, then each not

yet included task must wait for another not yet included task to be completed. Thus, the auxil-

iary graph contains a directed cycle and the algorithm stops because the work plan is infeasible.

Otherwise, the algorithm selects such a node and determines the start time of the corresponding

task considering the start times of all predecessor nodes in the auxiliary graph. If it is impossible

to return to the depot after completion of the task the algorithm stops because the work plan is

infeasible. Otherwise, it includes the task in the set N ∗ and continues with the next iteration.

Figure 8 illustrates the auxiliary graph and a feasible schedule computed by the algorithm. In

the first iteration node 6 is selected as this is one of the nodes where all incoming arcs originate
16
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Figure 8: Auxiliary graph.

at a node from N ∗. The start time at the node is computed and the node is included in N ∗. In

the next iterations, the nodes are selected in the order 2, 1, 3, 4, 11, 7, 8, 9, 5, 12, 13, 15, 14, and

10 and the earliest start time at each node can be uniquely determined considering start times of

nodes in N ∗ exclusively. Obviously, the nodes can also be selected in a different order as long as

n ∈ N ∗ for all (n,m) ∈ A′ if node m ∈ N \ N ∗ is selected. As we can see, the total downtime

of the schedule obtained by this algorithm is 280 units and thus 20 units larger than in the optimal

solution shown in Fig. 2.

Although the algorithm cannot be used to determine an optimal schedule, it is often much

faster to use this algorithm to determine whether a work plan is feasible or not. In the construction

method and during hill climbing we iteratively (re-)insert tasks to a work plan. For each task

there may be many different insertion possibilities and many of them are infeasible. Using the

feasibility check described above can thus lead to noticeable savings in computational effort. As

each alternative insertion possibility has a different impact on the objective function value and the

likelihood of determining a feasible work plan at all we propose several evaluators which can be

used in the different phases of the algorithm. Each evaluator checks whether the (partial) work
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plan is feasible and returns a value that can be used to compare alternative (partial) work plans. If

the (partial) work plan is infeasible the evaluators return infinity.

Optimal Schedule (OS): For each (partial) work plan this evaluator solves the scheduling prob-

lem using an LP solver to check feasibility and to find an optimal schedule. The evaluation function

returns the objective function value associated to the (partial) work plan and this optimal schedule.

Feasibility Check & Optimal Schedule (FCOS): This evaluator uses the check() function de-

scribed above to determine whether a (partial) work plan is feasible. If the (partial) work plan

is feasible, the earliest start times obtained within the feasibility check are used as an additional

lower bound on the start times within the scheduling problem. An optimal schedule is generated by

solving the scheduling problem using an LP solver. The evaluation function returns the objective

function value associated to the (partial) work plan and this optimal schedule.

Bidirectional Feasibility Check & Optimal Schedule (BFCOS): This evaluator uses the check()

function described above to determine whether a (partial) work plan is feasible. If the (partial)

work plan is feasible, a reverse version of the feasibility check is used to obtain the latest possible

start time of each scheduled tasks. The earliest and latest start times obtained are used as additional

lower and upper bounds on the start times within the scheduling problem. An optimal schedule is

generated by solving the scheduling problem using an LP solver. The evaluation function returns

the objective function value associated to the (partial) work plan and this optimal schedule.

Feasible Schedule (FS): This evaluator uses the check() function described above to deter-

mine a feasible schedule if possible. The evaluation function returns the objective function value

associated to the (partial) work plan and this feasible schedule.

Minimal Start Times (MST): For a candidate (partial) work plan this evaluator applies the

check() function described above to validate feasibility and to determine the earliest possible start

time of each scheduled task. The evaluation function returns the sum over these earliest start

times. As this evaluator privileges small start times when inserting tasks, the likelihood that all

subsequent tasks of the same job can be inserted is increased. However, travel costs are totally

ignored by this evaluator.
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Figure 9: An electricity network in central Germany.

5. Computational Experiments

This section presents computational experiments assessing the usefulness of our approach and

showing how to select evaluators within the different phases of the optimization process.

5.1. Test Instances

Our computational experiments are based on instances derived from real network data that has

been provided to us by a company that operates a large electricity network in central Germany.

The network, which is shown in Fig. 9, covers a rural area with an average population of 150 per

km2. The total length of power lines in this network is about 5200 km.

Using the network data, we have generated six instance sets A1 to A3 and B1 to B3 each

containing 100 test instances. The instance sets differ in the number of jobs and tasks of the con-

tained instances and in the regional area that is covered by the jobs, see Table 2. We randomly

selected power lines from the given network and generated maintenance jobs for these power

Table 2: Instance sets.

set nmbr. nmbr. nmbr. covered set nmbr. nmbr. nmbr. covered
instances jobs |J | tasks |T | area instances jobs |J | tasks |T | area

A1 100 10 50 entire network B1 100 10 50 subnetwork
A2 100 15 75 entire network B2 100 15 75 subnetwork
A3 100 20 100 entire network B3 100 20 100 subnetwork
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lines. For instances in sets A1 to A3, these power lines are randomly selected within the area

of the entire network. For instances in sets B1 to B3, power lines are selected from a randomly

selected subnetwork that covers about one fourth of the overall network. Thus, travel distances in

instance sets B1 to B3 are smaller than in A1 to A3. Each maintenance job j comprises five tasks

Tj = {τ j1 , τ
j
2 , τ

j
3 , τ

j
4 , τ

j
5} and has the structure illustrated in Fig. 1(b). Tasks τ j1 and τ j2 disconnect

the power line from the network. They are located at the transformer stations linked to the power

line. The actual maintenance is represented by task τ j3 which we assume to be located in the middle

of the power line. Tasks τ j4 and τ j5 reconnect the power line and are again located at the transformer

stations. Precedences for all jobs are given by Pj = {(τ j1 , τ
j
3 ), (τ

j
2 , τ

j
3 ), (τ

j
3 , τ

j
4 ), (τ

j
3 , τ

j
5 )}. Process-

ing times are set to sτ j1 = sτ j2
= sτ j4

= sτ j5
= 10 for tasks that dis- and reconnect a power line

and to sτ j3 = 60 for the maintenance task. The durations dn,m for traversing the network arcs

(n,m) ∈ A are derived from the Euclidean distances with a travel speed of 60 km/h. Travel cost

are set equal to travel times, i.e. cn,m = dn,m. The planning horizon is a 10-hour work shift, i.e.

T = 600 minutes. All workers begin and end their shift at a depot which is located in the center of

the network. Unless otherwise stated we set λ = 0.5 and cj = 1 for all j ∈ J in order to consider

both downtime of jobs and travel time of workers in the solution process. Alternative objective

weights are later investigated in a sensitivity analysis.

The test instances are provided online at http://prodlog.wiwi.uni-halle.de/electricity-

maintenance. For the experiments, the solution methods have been implemented in C++. As

MIP and LP solver, we use CPLEX 12.4, see IBM (2012). The tests are performed on an Intel

Core 2 Duo with 3.0 GHz.

5.2. Results for the Construction Method

The performance of the construction method presented in Section 4.1 depends on the evaluator

which is used to compare partial work plans. If the evaluator focuses on the objective function

value, some tasks of a job may be inserted at a very late time, reducing the likelihood that other

tasks of the same job can be feasibly inserted due to precedence constraints. On the other hand,

if the evaluator focuses on increasing the likelihood that all successor tasks of the same job can

be feasibly inserted, the total travel time may be unnecessarily high. Thus, a lot of time may be
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Table 3: Number of feasible initial solutions.
set A1 set A2 set A3

nmbr. workers w →
constructor↓ 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8

OS 57 66 66 66 66 66 0 11 32 33 33 33 0 0 0 18 22 22
FS 53 59 59 59 59 59 0 14 28 29 29 29 0 0 0 11 12 12
MST 0 73 100 100 100 100 0 0 6 69 97 99 0 0 0 0 17 71

OS∗ 91 100 100 100 100 100 0 33 97 100 100 100 0 0 0 69 98 100
FS∗ 88 99 100 100 100 100 0 33 99 100 100 100 0 0 1 81 100 100

set B1 set B2 set B3

nmbr. workers w →
constructor↓ 3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8

OS 31 36 36 36 36 36 0 12 15 16 16 16 0 0 7 8 9 9
FS 37 40 40 40 40 40 0 11 17 17 17 17 0 0 4 6 6 6
MST 42 100 100 100 100 100 0 1 82 100 100 100 0 0 0 25 95 99

OS∗ 100 100 100 100 100 100 0 84 100 100 100 100 0 0 33 97 100 100
FS∗ 100 100 100 100 100 100 0 91 100 100 100 100 0 0 49 99 100 100

dedicated to traveling and less time remains for actually performing the tasks. Consequently, the

likelihood that all jobs can be feasibly inserted may suffer.

In a first experiment we investigate the performance of the construction method with respect

to the different evaluators outlined in Section 4.4. Table 3 shows the results of our experiment for

the six instance sets and with a different number of workers available. The table shows the number

of feasible solutions obtained (out of 100 instances) and indicates the best results in bold face. As

evaluators OS, FCOS, and BFCOS return the same value we only report results for OS.

For most instance sets evaluators OS and FS appear to perform better in finding feasible

solutions than evaluator MST if the number of workers is small. With a small number of workers

it appears to pay off using these evaluators as evaluator MST may result in unnecessarily large

travel times occupying the available work time. On the other hand, evaluators OS and FS do

not benefit much from the availability of additional workers, so that for larger number of workers

MST can find more feasible schedules.

Table 3 also reports results of an additional variant of the construction method which combines

the benefits of different evaluators. The construction method presented in Section 4.1 stops if any

task cannot be feasibly inserted. As already mentioned above, the likelihood that all tasks of a job

can be inserted depends on the evaluator used. The modified construction method conducts the
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Table 4: Average costs of initial solutions.

constructor set A1|w = 5 set A2|w = 6 set A3|w = 8 set B1|w = 3 set B2|w = 5 set B3|w = 7

OS∗ 870 1341 1815 802 1240 1681
FS∗ 880 1327 1787 799 1214 1651

same steps as the original method. However, if a task τ belonging to a job j cannot be inserted

the modified method does not terminate directly. Instead it removes all tasks in Tj which may

have been inserted before. Then it tries to insert all tasks belonging to j using evaluator MST .

If successful, the method continues like the original method. Otherwise, it also terminates. In

the table we denote with OS∗ and FS∗ the results of the modified construction method using

evaluators OS and FS as primary evaluator. It can be seen that the modified construction method

which uses evaluator MST if the primary evaluator fails, clearly outperforms the original method.

It appears that FS∗ performs better than OS∗, indicating that an exact evaluation of downtimes is

not necessarily beneficial with respect to feasibility.

To further compare the performance of the different evaluators we assess the quality of the fea-

sible solutions. For this comparison and all subsequent experiments we fix the number of workers

available for each instance set to the smallest number for which both OS∗ and FS∗ succeed in

finding feasible solutions for all 100 instances. Table 4 shows the average cost of initial solutions

obtained for OS∗ and FS∗. We see that neither evaluator clearly outperforms the other and that

average costs differ by at most 2% with a slight advantage for evaluator FS∗.

5.3. Results for the Hill Climbing Method

As for the construction method, we need to select an evaluator for the hill climbing method. In

a second experiment we investigate which combination of evaluators performs best for construc-

tion and subsequent hill climbing. The main difference in the choice of the evaluator used during

hill climbing is that we already know that each task which is removed from a feasible work plan

can be inserted again. Therefore, feasibility is not a concern during hill climbing and the evaluator

used during hill climbing can focus fully on cost. As evaluator MST ignores costs it can actually

deteriorate solution quality if used within the hill climbing method, so in the remainder we do not

consider this evaluator for hill climbing. Tables 5 and 6 show the results of the second experiment.
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Table 5: Average costs after hill climbing.

set A1|w = 5 set A2|w = 6 set A3|w = 8

constructor→
hill climbing↓ OS∗ FS∗ OS∗ FS∗ OS∗ FS∗

OS 792 795 1173 1170 1540 1538
FS 815 814 1229 1219 1619 1611

set B1|w = 3 set B2|w = 5 set B3|w = 7

constructor→
hill climbing↓ OS∗ FS∗ OS∗ FS∗ OS∗ FS∗

OS 684 686 1009 1014 1332 1332
FS 717 720 1071 1070 1423 1422

The average cost observed for the 100 instances of each instance set is presented in Table 5.

The results show that using evaluatorOS during hill climbing clearly outperforms evaluator FS no

matter whether OS∗ or FS∗ are used for construction of an initial feasible solution. This confirms

that, during hill climbing, an evaluator focusing on assessing the exact cost of solutions should be

used to achieve high solution quality.

Table 6: Average computation time cpu (in seconds) for construction and hill climbing.

set A1|w = 5 set A2|w = 6 set A3|w = 8

constructor→
hill climbing↓ OS∗ FCOS∗ BFCOS∗ FS∗ OS∗ FCOS∗ BFCOS∗ FS∗ OS∗ FCOS∗ BFCOS∗ FS∗

OS 15 14 13 13 56 52 51 51 147 139 138 133
FCOS 5 4 3 3 14 10 10 9 34 25 25 24
BFCOS 4 3 3 3 12 8 8 7 28 20 19 18
FS 2 1 1 <1 5 2 1 <1 12 3 3 1

set B1|w = 3 set B2|w = 5 set B3|w = 7

constructor→
hill climbing↓ OS∗ FCOS∗ BFCOS∗ FS∗ OS∗ FCOS∗ BFCOS∗ FS∗ OS∗ FCOS∗ BFCOS∗ FS∗

OS 16 15 15 14 64 61 60 57 181 175 172 174
FCOS 5 4 4 3 18 15 15 14 49 41 41 41
BFCOS 4 3 3 3 14 11 11 10 37 30 29 29
FS 2 1 1 <1 5 2 2 <1 12 4 4 1

Table 6 shows the cpu times (measured in seconds) required for the second experiment. In

this table we also show results for evaluators FCOS and BFCOS and their corresponding adap-

tations FCOS∗ and BFCOS∗ which use the MST evaluator as fallback during construction.

Table 6 shows that the overall computational effort is significantly smaller if evaluators FCOS

and BFCOS are used instead of OS. The reason for this speed up is that feasibility of a work
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plan can be checked much faster using the check() function presented in Section 4.4 compared to

using an LP solver for the scheduling problem. As many infeasible work plans may be encoun-

tered during the search, this reduction in computational effort compensates for the additional effort

required for the cases where feasible schedules exist. Evaluator BFCOS appears to be yet a lit-

tle faster than evaluator FCOS, however, obviously evaluator FS outperforms the others if very

fast computation times must be achieved. It must also be noted that the choice of the evaluator

used during hill climbing has a much higher impact on computation times than the choice of the

evaluator used during construction.

5.4. Results for the Large Neighborhood Search

To evaluate the performance of the proposed Large Neighborhood Search we conduct a third

experiment. For all tests in this experiment evaluator BFCOS∗ is used for constructing the ini-

tial solution for LNS and BFCOS is used for improving this solution by the hill climber. This

decision is drawn from our previous experiments where these evaluators achieved most of the

best solutions and the lowest computation times among those evaluators that solve the scheduling

subproblem to optimality.

In each LNS iteration, jobs are removed and reinserted and hill climbing is applied afterwards.

Two evaluators are thus needed: one for reinserting jobs and one for hill climbing. Our previ-

ous experiments indicated that BFCOS and FS appear to be good candidates for the evaluators

used during LNS. Furthermore, we have conducted a series of pre-tests to determine appropriate
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Figure 10: Convergence behavior of selected LNS configurations.
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parameter values for the number of jobs to be removed and reinserted in each LNS iteration and

the number of iterations to be performed by the LNS before terminating. Figure 10(a) illustrates

the change in the solution cost and the required computation time when performing 1000 LNS

iterations. The shown cost values and computation times are averages over the 100 instances of

set A1|w = 5. We report these measures for two combinations of evaluators. In the first combina-

tion BFCOS is used for both reinserting removed jobs and hill climbing whereas in the second

combination FS is used for both purposes.

We see that solutions are quickly improved under both configurations. After a few hundred

LNS iterations no further significant reduction in costs takes place. The final costs of BFCOS-

BFCOS and FS-FS are 710 and 720, respectively. Figure 10(b) shows the computation times

that are needed for performing the 1000 iterations. We can observe that computation time per iter-

ation remains fairly stable throughout the 1000 LNS iterations. For 1000 LNS iterationsBFCOS-

BFCOS requires about 1300 seconds of computation time whereas FS-FS requires just about

30 seconds. Figures 11(a) and (b) illustrate the cost and computation times of both LNS configu-

rations when changing the number of jobs k that are removed in each LNS iteration. We observe

that too low and too high values of k lead to solutions of poor quality, whereas moderate values

k = 4 to k = 6 produce solutions of lowest cost. Computation times are tremendously higher for

BFCOS-BFCOS than for FS-FS under any value of k. The same effects have been observed

in further pre-tests for the other instance sets. We conclude from the results of Fig. 10 that 500 it-
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erations is an appropriate termination criterion for LNS and from Fig. 11 that k = 5 is a reasonable

setting for removing jobs.

Our previous experiment indicated that BFCOS-BFCOS not only achieved best solution

quality but also brings a larger improvement than FS-FS for the first iterations in which costs

are drastically reduced. However, if we compare both LNS configurations with respect to the im-

provement achieved per second of computation time, we observe that FS-FS can initially improve

solution quality faster than BFCOS-BFCOS, see Fig. 12. Thus, if very little time is available

for optimization FS-FS may be a better choice than BFCOS-BFCOS. This situation could

occur in interactive optimization where a human planner and a computer system collaboratively

search for a solution (see e.g. Goel & Gruhn, 2006) or if due to a failure in the electricity system

a repair job must be performed immediately and the work plans of some workers must be revised

quickly. In our further experiments we assume that very fast computation times are not required

and the goal is to find solutions of high quality within reasonable time.

Tables 7 and 8 report the average cost and computation times observed for all six instance sets

and combinations of BFCOS and FS within LNS. The results show that LNS achieves another

reduction in cost of up to 14% compared with the locally improved initial solutions of Table 5.

Our experiments indicate that BFCOS-BFCOS is the best combination for all instance sets and

that FS leads to deteriorated solutions in all instance sets if it is used for construction and/or

hill climbing. As most of the improvement is achieved within the first minute of the method an

additional time limit could be used within the LNS if faster computation times are required.

26



Table 7: Average costs achieved by LNS configurations.

set A1|w = 5 set A2|w = 6 set A3|w = 8 set B1|w = 3 set B2|w = 5 set B3|w = 7

reinsertion→
hill climbing↓ BFCOS FS BFCOS FS BFCOS FS BFCOS FS BFCOS FS BFCOS FS

BFCOS 710 714 1034 1045 1354 1379 652 653 948 963 1250 1280
FS 715 721 1049 1058 1400 1422 659 661 983 994 1319 1327

Table 8: Average computation time cpu (in seconds) required by LNS configurations.

set A1|w = 5 set A2|w = 6 set A3|w = 8 set B1|w = 3 set B2|w = 5 set B3|w = 7

reinsertion→
hill climbing↓ BFCOS FS BFCOS FS BFCOS FS BFCOS FS BFCOS FS BFCOS FS

BFCOS 642 440 1354 1021 2313 2119 343 209 984 905 2102 2477
FS 311 18 565 48 851 108 222 14 510 49 877 120

Table 9: Average results achieved by CPLEX.

set A1|w = 5 set A2|w = 6 set A3|w = 8 set B1|w = 3 set B2|w = 5 set B3|w = 7

nmbr. feas. sol.: 100 61 7 26 1 1
avg. costs: 705 1049 1409 672 950 1706
avg. LB: 637 875 1118 524 750 972
avg. cpu: 36000 36000 36000 36000 36000 36000

In the previous experiments we considered sets of 100 test instances to avoid any bias re-

sulting from the individual characteristics of the instances used. In the following experiment we

furthermore assess the bias resulting from the inherent randomness of the method and the choice

of random seeds. We have rerun the best performing LNS configuration BFCOS-BFCOS with

ten different random seeds for each of the instances. From the results, we observe that the average

solution cost of the ten repetitions are within 0.1% of the cost reported in Table 7. We conclude

that the random bias is negligibly and that the average cost obtained by a single test run provides

a precise estimate on the performance of the heuristic.

To further assess the heuristic, we also applied the MIP solver of CPLEX to the six sets of

100 instances each. To aid CPLEX in solving the problem we added additional cuts which are

described in Goel & Meisel (2013). In our experiments CPLEX was given a runtime of ten hours

per instance and the test was conducted on a symmetric multiprocessing (SMP)-cluster equipped

with 2.6 GhZ AMD Opteron CPUs. Aggregated results for all instance sets are shown in Table 9.

The results reveal that CPLEX delivers 100 feasible solutions only for set A1|w = 5. However,
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none of the instances is solved to optimality within the given runtime. The solutions found within

ten hours show average cost of 705, which is a saving of merely 1% compared to the solutions

returned by LNS within just about ten minutes. For all other sets, CPLEX does not succeed in

finding a feasible solution for each of the 100 instances. Furthermore, the average cost of those

solutions that are found is worse than the cost of solutions delivered by BFCOS-BFCOS, as

can be seen when comparing Tables 7 and 9. The lower bounds returned by CPLEX can be used

for further assessing the quality of the heuristic solutions. We observe average gaps for the best

solutions found by LNS that range from 9.6% (set A1) to 20.2% (set B3). Hence, there may exist

potential for further improvement of the heuristic solutions but it is also possible that CPLEX

simply failed closing the gap as it is generally struggling with solving these instances.

Finally, we investigate how our approach behaves if a planner prefers objective weights that

differ from the so far used λ=0.5. For this experiment we compute a lower bound exploiting the

5-task structure of the jobs and the precedence relations (see Goel & Meisel, 2013). From solving

the six instance sets with LNS configuration BFCOS-BFCOS, we observe that the downtimes

approximate the lower bounds with increasing values of λ. For λ = 0.95 the largest relative gap

is observed for B1|w = 3 with about 5%. For all other sets, the gap ranges between 1% and 3%.

This confirms that the solutions produced by LNS are of very good quality and that they meet the

important requirement of short downtimes in electricity network maintenance.

Note that detailed results for all test instances including the lower and upper bounds obtained

by CPLEX, the best solutions found by LNS, and details on the final sensitivity analysis are pro-

vided in Goel & Meisel (2013).

6. Conclusions

In this paper, we study the operational problem occurring when a set of maintenance jobs in an

electricity network must be performed by a given set of workers who must travel between locations

associated to the different tasks belonging to a maintenance job. We model the problem as a mixed-

integer program and show how high quality solutions of the problem can be obtained quickly. A

Large Neighborhood Search meta-heuristic is presented which combines the heuristic generation

of work plans with approximate and exact methods for scheduling of maintenance tasks. From
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experiments on a large set of instances derived from a real network, we observed that best results

are obtained when a linear programming based scheduling method combined with a heuristic

feasibility check is used. The planning approach allows to generate work plans for maintenance

workers that show very low downtimes and travel costs. The method can be parameterized by the

planner to strive for the desired goal. The approach can also be used for determining the number

of workers required to perform a given set of maintenance jobs.
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