
Minimising total tardiness for a single machine scheduling

problem with family setups and resource constraints

Oliver Herra, Asvin Goelb

aJacobs University, Bremen, Germany
bKühne Logistics University, Hamburg, Germany

Abstract

This paper considers a single machine scheduling problem in which each job to be
scheduled belongs to a family and setups are required between jobs belonging to
different families. Each job requires a certain amount of resource that is supplied
through upstream processes. Therefore, schedules must be generated in such a
way that the total resource demand does not exceed the resource supply up to any
point in time. The goal is to find a schedule minimising total tardiness with respect
to the given due dates of the jobs. A mathematical formulation and a heuristic
solution approach for two variants of the problem are presented. Computational
experiments show that the proposed heuristic outperforms a state-of-the-art com-
mercial mixed integer programming solver both in terms of solution quality and
computation time.

1. Introduction

In this paper we study the problem of scheduling jobs on a single machine with
the goal of minimising total tardiness. Each job has a given processing time, a due
date, and belongs to a given family. The machine can only process one job at a
time and each job must be processed without preemption. A setup task has to be
conducted between jobs belonging to different families and during this setup the
machine cannot process any job.

In the problem studied in this paper, each job requires a certain amount of a
common resource that is supplied through upstream processes. At any time, the

Email addresses: o.herr@jacobs-university.de (Oliver Herr),
asvin.goel@the-klu.org (Asvin Goel)

Preprint submitted to Elsevier June 30, 2015

cumulative consumption must not exceed the cumulative supply. Therefore, jobs
may have to wait due to an insufficient availability of the resource.

Figure 1 illustrates the implication of the resource constraints. The figure
shows the cumulative amount of resource supplied and the cumulative amount
of resource required over time. The cumulative amount of resource supplied is
shown as a linear curve with a constant supply rate. The cumulative resource
demand over time is shown as a piece-wise linear curve that increases whenever a
job is processed. The dotted vertical lines illustrate completion times of individual
jobs. Horizontal segments of the demand curve illustrate times during which the
machine has not yet started processing the next job, e.g. because a setup is
conducted. As the cumulative amount of resource required must not exceed the
cumulative amount of resource supplied at any time and because each job must
be processed without preemption, the machine may also have to be idle before
starting to process a job due to limited resource availability.

time

quantity

cumulative supply

cumulative demand

Figure 1: Depiction of the resource constraint in the context of schedul-

ing with family setup times.

Our work is motivated by a practical problem arising in the continuous casting
stage of steel production. A continuous caster is fed with ladles of liquid steel. Each
ladle contains a certain steel grade and has orders allocated to it that determine
a due date. Whenever two ladles of similar steel grade (within one setup family)
are processed consecutively, no setup process is necessary. However, a setup is
required whenever changing to a steel grade from another setup family. The liquid
steel is produced from hot iron supplied by the blast furnace with a constant rate.

2

The sequence of ladles, including setups between ladles of different setup families,
is not allowed to consume more hot metal then supplied by the blast furnace (see
e.g. Box and Herbe 1988).

Similar situations occur in multi-stage production processes, where upstream
work systems supply the common resource that is consumed by the jobs produced
on the machine. Examples can be found in assembly processes where parts and
components provided by an upstream stage are used to assemble different products
(e.g. Drótos and Kis 2013, cutting pieces from a steel slab).

The remainder of this paper is organised as follows. Section 2 gives an overview
of related work. Section 3 contains a detailed description of the problem and
presents MIP formulations for two variants of the problem. In Section 4 we present
an iterated local search approach for solving the problem. Section 5 presents
computational experiments before final remarks are given in Section 6.

2. Related work

There are three main streams of literature that are of interest for the prob-
lem studied in this paper. First, scheduling with the target of minimising total
tardiness. Second, single machine scheduling with setup considerations. Third,
scheduling with resource constraints.

Comprehensive surveys for the minimum tardiness scheduling problem are pre-
sented by Koulamas (2010) and Sen et al. (2003). Even without setup consider-
ations, the single machine total tardiness problem is proven to be NP-hard (Du
and Leung 1990). Most methods developed for single machine problems that
minimise total tardiness use properties developed by Emmons (1969) and Lawler
(1977). Emmons (1969) describes conditions that need to be fulfilled in an optimal
schedule, and Lawler (1977) introduced a decomposition approach that separates
a problem into two mutually exclusive sub problems using the longest job to sep-
arate. For the problem of scheduling independent jobs on identical parallel ma-
chines, Shim and Kim (2007) present a branch and bound algorithm to minimise
total tardiness. Schaller (2009) presents improved lower bounds that can be used
in this branch-and-bound algorithm to reduce the computational effort required.
Recently, Lee and Kim (2015) present a branch-and-bound algorithm for the prob-
lem of minimising the total tardiness of jobs in which for both of the two identical
machines periodic maintenance activities are required during which the machine
cannot process any job.Furthermore, Mensendiek et al. (2015) developed proper-
ties for optimal sequences with the total tardiness objective on parallel machines
with fixed delivery dates and present heuristics for solving the problem.

3

The literature on scheduling with setup considerations is summarised e.g. in
surveys of Allahverdi et al. (2008) and Potts and Kovalyov (2000). For the prob-
lem of minimising total tardiness on a single machine with sequence-dependent
setup times, Gupta and Smith (2006) presented a GRASP multi-start heuristic as
well as a space-based local search procedure, Liao and Juan (2007) developed a
method based on ant colony optimization, Lin and Ying (2008) a hybrid of sim-
ulated annealing and tabu search, Ying et al. (2009) an iterated greedy heuristic
based on local search, and Sioud et al. (2012) a hybrid genetic algorithm. An exact
branch-and-bound algorithm for this problem class is presented by Bigras et al.
(2008). For the variant of the problem where the goal is to mininise the weigthed
tardiness of all jobs, Tanaka and Araki (2013) recently developed an exact proce-
dure based successive sublimation dynamic programming and Subramanian et al.
(2014) recently presented an iterated local search heuristic.

In family scheduling problems, all jobs are assigned to a certain family and a
set of jobs of the same family that is produced consecutively without a setup is
called a batch. While the allocation of jobs to families is given as a parameter,
the allocation of jobs to batches for a certain setup family is part of the decision
process. Under the group technology assumption (GTA) (see e.g. Potts and Van
Wassenhove 1992) all jobs of the same setup family must be produced within
exactly one batch, while several batches of the same family can be scheduled in
the general case that is considered in this paper.

Gupta and Chantaravarapan (2008) and Schaller (2007) study a family schedul-
ing problem in which the goal is to minimise total tardiness. Gupta and Chan-
taravarapan (2008) studied the problem under consideration of the GTA. They
present a MIP formulation to solve small problem instances as well as a heuristic
algorithm for larger instances. In their heuristic the authors separate the sequenc-
ing of jobs within a batch and the sequence of batches. Inside each batch they
used a combination of neighbourhood operators previously developed by Holsen-
back and Russell (1992) and Panwalkar et al. (1993).

Schaller (2007) studied the family scheduling problem with and without the
GTA. Based on the properties described by Emmons (1969), two optimal branch
and bound procedures for both cases are developed. Furthermore, a heuristic
based on five local search moves is proposed. These moves include the combining
of two batches of the same setup family, moving jobs between batches of the same
setup family, breaking a batch into two parts, and interchanging pairs of jobs. Fur-
thermore, Schaller and Gupta (2008) study the minimisation of both earliness and
tardiness for a single machine scheduling problem with family setups and propose
exact and heuristic methods with and without the GTA. More recently, Schaller

4

(2014) presents several heuristic approaches for scheduling identical parallel ma-
chines with family setups for the problem of minimising total tardiness.

Grigoriev et al. (2005) provide a survey on scheduling problems with raw ma-
terial constraints. They distinguish between three types of raw material usages:
a) each job has its own raw material, b) a common resource is required by all jobs,
and c) multiple common raw materials are required for each job. For all three
cases they considered the objective of minimising maximum lateness and minimis-
ing makespan. Briskorn et al. (2010) study a single machine scheduling problem
where jobs cannot be processed if the required resource is not available. Among
the objectives considered are the objectives of minimising maximum lateness and
minimising the number of tardy jobs. Györgyi and Kis (2014) study variations of
the problem of minimising makespan with resource constraints using propositions
from the knapsack and vertex cover problems to develop a polynomial-time ap-
proximation scheme. Briskorn et al. (2013) study the single machine problem with
inventory constraints to minimise the weighted sum of completion times. The au-
thors derived properties for an optimal solution and developed a branch and bound
as well as a dynamic programming approach to solve the problem. They conclude
that even for small problem instances with 20 jobs, exact approaches are not effi-
cient enough and heuristic approaches are required. None of these works considers
the objective of minimising total tardiness.

While previous work on family scheduling problems does not include resource
constraints, papers published on scheduling problems with resource constraints
do not consider family setups. To the best of our knowledge, the single machine
scheduling problem with family setups and resource constraints has not been stud-
ied.

3. Problem Description

The machine scheduling problem studied in this paper can be described as
follows. Let J denote a set of jobs to be processed by a single machine. Each
job is characterised by a due date dj, a processing time pj, and the quantity qj
of a resource required by the machine to process the job. It is assumed that the
resource is consumed at a constant rate qj/pj. Furthermore, each job belongs to a
given setup family fj. For any pair of jobs i, j ∈ J with fi 6= fj, a setup of duration
sij is required between processing jobs i and j. A single machine is available that
can process one job at a time. The resource required is supplied with a constant
rate of r per unit of time, and initially an amount of r∗ of the resource is available.
The goal is to find a production schedule that minimises total tardiness.

5

time

quantity

Ci Ci+sij Cj−pj Cj

r∗

cumulative supply

︸ ︷︷ ︸

setup

︸ ︷︷ ︸

waiting time

i

jj

Figure 2: Example how required waiting time can result in an increased

completion time.

The fundamental difference of this problem to the case without resource con-
straints is, that it may be necessary that the machine is idle because the required
resource for the next job is net yet available, whereas in the case without resource
constraints the machine is only idle for the time of the setups that may be required.
In the case without resource constraints the optimal duration of any subsequence
of jobs is always the sum of all processing times and the required setups. Figure 2
shows an example where the minimum duration of a sequence is larger than the
sum of processing and setup times because the machine has to wait for the resource
required. In the example shown in the figure, it is not possible to schedule job
j immediately after job i and the completion of the setup, because the cumula-
tive resource requirements exceeds the cumulative resource supply if no additional
waiting time is scheduled.

Without resource constraints, any sequence of jobs of the same family can be
reordered without impacting the completion time of this sequence and the tar-
diness of subsequent jobs. Therefore, it is possible to locally optimise the order
in which jobs of the same family are scheduled. In the presence of resource con-
straints, however, any permutation of jobs may lead to an increase or decrease
of the cumulative duration due to necessary waiting times. Figure 3 illustrates
an example in which the sequence of jobs within a batch can impact cumulative
duration due to necessary waiting times. In the sequence illustrated by the dashed
line, job j2 has to wait after completion of job j3 due to insufficient resource avail-

6

time

quantity

r∗

cumulative supply

j1
j2

j3

j3

j2

j1

Figure 3: Example on how the sequence of jobs within a batch can

increase the total completion time.

ability, whereas no waiting time is required in the sequence illustrated by the solid
line. Thus, the tardiness of subsequent jobs may change if the order of jobs within
a subsequence is modified.

For the first problem variant studied in this paper let us assume that the
machine can be idle for any period of time after completion of one job and before
starting to process the next job. For the ease of notation we assume that sij = 0 for
any pair of jobs i, j ∈ J with fi = fj. Furthermore, we assume that each schedule
begins with a dummy job j∗ that is included in J . This job has a due date
large enough so that it will never be tardy, has zero precessing time and resource
demand, and no setup time is required before processing any other job. Let xij

denote a binary variable indicating whether job j ∈ J is scheduled immediately
after job i (xij = 1) or not (xij = 0).

For each job j ∈ J let Cj, Tj and Qj be variables indicating the completion
time, the tardiness, and the accumulated amount of the resource requirements.
Furthermore, let xij denote a binary variable indicating whether job i is processed
immediately before job j or not.

The problem is

minimise
∑

j∈J

Tj (1)

7

subject to

∑

i∈J\{j}

xij = 1 for all j ∈ J (2a)

∑

j∈J\{i}

xij = 1 for all i ∈ J (2b)

Cj∗ = 0 (3a)

Cj ≥ Ci + sij + pj − (1− xij)M for all i ∈ J, j ∈ J \ {j∗} (3b)

Tj ≥ 0 (4a)

Tj ≥ Cj − dj for all j ∈ J (4b)

Qj∗ = 0 (5a)

Qj ≥ Qi + qj − (1− xij)M for all i ∈ J, j ∈ J \ {j∗} (5b)

Qj ≤ r∗ + rCj for all j ∈ J (6)

xij ∈ {0, 1} for all i, j ∈ J (7)

The objective (1) is to minimise the sum of tardiness of all jobs in the produc-
tion schedule. Constraints (2a) and (2b) require that each job is fulfilled exactly
once. Constraints (3a) and (3b) require that the completion time of a job must
be at least as large as the the completion time of the preceding job plus the re-
quired setup time (which may be zero), and the processing time. Constraints (4a)
and (4b) restrict the tardiness of each job so that in the optimal solution we have
Tj = max{0, Cj−dj}. Constraints (5a) and (5b) ensure that Qj is at least as large
as the cumulative resource requirements until job j ∈ J . The cumulative resource
requirements must not exceed the amount available until completion of the job
as required by constraint (6). Finally, constraint (7) restricts the domain of the
binary decision variables.

Because of operational requirements it is not always possible that a machine
can be idle between completion of one job and start of the next job. This is the

8

case, if a machine must be brought to a state in which it can remain idle, e.g. if
cleaning is required. For such cases, we assume that the duration of a setup that
may be required between jobs of different families can be increased by an arbitrary
amount, however, an additional setup between jobs of the same family is required
if the job does not start immediately after completion of the preceding job. For
this second problem variant we thus have sij > 0 for jobs i, j ∈ J with fi = fj.
As this setup between jobs of the same family is not always necessary we have to
add a binary variable yij indicating whether a setup is conducted between jobs i
and j to our model. The following constraints are added to the problem

yij = xij for all i, j ∈ J : fi 6= fj (8a)

yij ≤ xij for all i, j ∈ J : fi = fj (8b)

yij ∈ {0, 1} for all i, j ∈ J (9)

and constraints (3a) and (3b) are replaced by constraints

Cj∗ = 0 (10a)

Cj ≥ Ci + yijsij + pj − (1− xij)M for all i ∈ J, j ∈ J \ {j∗} (10b)

Cj ≤ Ci + pj + (1− xij + yij)M for all i ∈ J, j ∈ J \ {j∗}. (10c)

Constraint (8a) ensures that a setup is conducted if jobs of different families are
processed after another, whereas constraint (8b) allows a setup to be conducted
if jobs of the same family are processed after another. Constraint (9) gives the
domain of the additional binary decision variables. Like constraint (3a) and (3b),
constraints (10a) and (10b) require that the completion time of a job must be at
least as large as the the completion time of the preceding job plus the setup time,
if a setup is conducted, and the processing time. Furthermore, constraint (10c)
ensures that job j is processed immediately after completion of a preceding job i
if no setup is conducted.

Obviously, any feasible solution for this problem variant is also a feasible so-
lution to the first problem variant described by (1) - (7). However, the sequences
of jobs that are optimal for the two problem variants may differ. Let us consider
the example with two jobs belonging to the same setup family with parameters
d1 = 0, p1 = 14 and d2 = 15, p2 = 12. Furthermore, assume that at the beginning
of the planning horizon there is an initial inventory that is sufficient to process
either of the jobs without delay, but not both, and that after 30 units of time the

9

resource supply reaches a level that is sufficient to process both jobs. Further-
more, let us assume that for the second problem variant, the duration of a setup
between the two jobs is sufficiently large, so that an optimal solution will not have
a setup between the two jobs. Figure 4 illustrates the optimal sequences for both
problem variants. The optimal sequence is illustrated by a solid line, whereas the
inferior sequence by a dashed line. For the first problem variant, where the ma-
chine may be idle for any period of time after completion of one job and before
starting to process the next job, the optimal sequence is to process job 1 before
job 2 with C1 = 14, T1 = 14, C2 = 30, T2 = 15 and a total tardiness of 29. If
job 2 is processed before job 1, we have C1 = 30, T1 = 30, C2 = 12, T2 = 0 and a
total tardiness of 30. For the second problem variant, where an additional setup
between jobs of the same family is required if the job does not start immediately
after completion of the preceding job, it is better to delay the start of the first
job in the optimal sequence instead of adding an additional setup. The optimal
sequence is to process job 2 before job 1 with C1 = 30, T1 = 30, C2 = 16, T2 = 1
and a total tardiness of 31. If job 1 is processed before job 2, we have C1 = 18,
T1 = 18, C2 = 30, T2 = 15 and a total tardiness of 33.

Problem variant 1

time

quantity

12 14 16 18 30

r∗

cumulative supply

j1

j2

j2

j1

Problem variant 2

time

quantity

4 16 18 30

r∗

cumulative supply

j1

j2

j2

j1

Figure 4: Example on how the optimal sequences can differ for both problem variants.

As the above example and the example of Figure 3 illustrate, the optimal se-
quence depends on both the resource availability as well as the operational details
determining when necessary waiting times can be scheduled. Thus, the previously
developed optimality conditions for minimising total tardiness, e.g. those pre-
sented by Schaller (2007), are not valid for scheduling with resource constraints.
As a result, a solution approach cannot exploit these properties.

10

4. Solution approach

Solving the problem described above using a MIP-solver is in general too time
consuming for problem instances with larger numbers of jobs. In fact, if all jobs
belong to the same family and r∗ is sufficiently large, the problem reduces to the
single machine total tardiness problem studied by Du and Leung (1990) which is
proven to be NP-hard. It follows that the problem studied in this paper is also
NP-hard. Therefore, we present a heuristic approach based on simple operators
for modifying the sequence of jobs. With this approach we are able to generate
schedules with low total tardiness quickly.

1: set s := initialsolution()
2: set i := 1;
3: while i ≤ k do

4: repeat

5: select neighbourhood operator Ω
6: for all schedules s′ that can be generated by applying Ω to s do

7: if tardiness(s′) < tardiness(s) then
8: set s := s′

9: end if

10: end for

11: until s is locally optimal for all operators
12: set s := perturbation(s)
13: set i := i+ 1;
14: end while;

Figure 5: Heuristic

The pseudocode of our heuristic is shown in Figure 5. The approach begins by
generating an initial solution which can be any sequence of jobs. It then initialises
an iteration counter and repeats the same steps until the iteration counter has
reached a given limit. In each iteration, the approach selects the next neighbour-
hood operator from a randomly generated sequence of the operators. For each
operator, all possible moves are examined. If an improving solution is found, this
solution is accepted as the new incumbent solution. If no improvement can be
obtained by any of the operators a locally optimal solution is found. Following
the iterated local search framework of Lourenço et al. (2003), the search process
is repeated in order to be able to escape from local optima of poor quality. Before

11

continuing with the next iteration, the incumbent solution is perturbed in order
to obtain a new solution that potentially can be improved using the operators.

The solution approach comprises three main components: the evaluation of
tardiness of a given sequence of jobs, different neighbourhood operators to modify
sequences, and a method to perturb a solution.

4.1. Tardiness evaluation

To evaluate the tardiness of a particular sequence the approach has to compute
completion times and tardiness values for each job in the sequence. For the first
problem variant, in which the machine may be idle for any period of time after
completion of one job and before starting to process the next job, optimal comple-
tion times for a given sequence of jobs can be computed very easily. For a job j in
a given sequence, let Qj denote the cumulative amount of resource required by all
jobs in the sequence up to job j. The completion times of the jobs in the sequence
can be computed as follows. The first job j in the sequence has completion time

Cj = max{pj,
Qj − r∗

r
}.

For all other jobs j the completion time is

Cj = max{Ci + sij + pj,
Qj − r∗

r
},

where job i is the predecessor of j. The tardiness of any job j is

Tj = max{0, Cj − dj}.

Now, let us consider the second problem variant, where an additional setup
between jobs of the same family is required if the job does not start immediately
after completion of the preceding job. If the values yij indicating whether there is a
setup between i and j are known, completion times and tardiness can be scheduled
analogously to the method described above. The solution approach presented in
this paper, however, is based on operators changing the sequence of jobs and the
decision whether a setup is taken or not is not explicitly taken by the operators.
Instead, this decision is taken when calculating the completion times of the jobs
in the sequence. The first job j in the sequence is tentatively given the completion
time

Cj = max{pj,
Qj − r∗

r
}.

12

This value may have to be increased if a subsequent job without intermediate
setup cannot be processed due to the resource constraint.

For any other job j, we have to distinguish between several cases. If fi 6= fj,
where job i is the predecessor of j, then a setup is required and the completion
time job j is tentatively set to

Cj = max{Ci + sij + pj,
Qj − r∗

r
}.

If fi = fj then two alternatives must be considered. In the first alternative an
additional setup is included and the completion time of job j is tentatively set to

Cj = max{Ci + sij + pj,
Qj − r∗

r
}.

In the second alternative, no setup is made between i and j and the completion
time of job j is tentatively set to

Cj = max{Ci + pj,
Qj − r∗

r
}.

To eliminate possible idle time between jobs, the completion time of all jobs prior
to j which are not separated by a setup is increased by

∆ = max{0,
Qj − r∗

r
− (Ci + pj)}.

As above, the tardiness of any job j is

Tj = min{0, Cj − dj}.

The approach can efficiently be implemented as follows. For any job in a given
sequence of jobs let l = (ltime, ltardiness) be a label where ltime denotes the completion
time of the job and ltardiness denotes the cumulative tardiness until completion of
the job. The approach begins with a label l = (0, 0). Then it iterates through
the given sequence of jobs and calculates completion times and tardiness values
as described above. For each different alternative a new label is generated. By
extending each alternative label, a tree of alternatives is generated. To reduce the
number of alternative labels to be considered the following dominance criteria are
used to reduce the number of labels.

13

Proposition 1. Let l1 and l2 denote labels associated to schedules up to the same
job i in a sequence of jobs and let j denote the next job in the sequence. Label l1
dominates label l2 if

ltime
1 + sij ≤ ltime

2

and
ltardiness1 ≤ ltardiness2 .

Proof: Let l̂1 denote the label associated to the schedule obtained by adding
a setup of duration sij and job j to the schedule associated to l1 and let l̂2 denote
the label associated to a schedule obtained by extending the schedule associated
to l2 by job j. We have l̂time

1 ≤ l̂time
2 and l̂tardiness1 ≤ l̂tardiness2 . Furthermore, for any

extension of l̂1 and l̂2 adding setups at the same positions, every job in the schedule
associated to the former will be completed earlier or at the same time compared
to the same job in the schedule associated to the latter. Thus, the total tardiness
of the former will be smaller or equal to the latter and l1 dominates l2.

By eliminating all dominated labels, the size of the search tree built to evaluate
total tardiness is reduced effectively.

It must be noted that total tardiness can similarly be evaluated for non-
constant supply and demand rates. By replacing all occurrences of the term
Qj−r∗

r
with a function that calculates the earliest point in time when the job j

can be completed subject to a sufficient resource availability, arbitrary supply and
demand patterns can be considered.

4.2. Operators

The solution approach uses six different operators. The first two operators are
directly based on the sequence of jobs, whereas the other operators are based on
batches, i.e. subsequences without a setup. The advantage of such batch-based
operators is that some structural properties of the current solution are maintained
and unnecessary setups can be avoided.

4.2.1. Job Move

The Job Move operator selects a job and inserts it at another position in the
sequence. Figure 6 illustrates all possible operator moves for a given job. After
selecting a job, the operator iterates through the sequence of jobs and evaluates
the insertion of the job at all possible positions. If total tardiness can be reduced,
the job is moved to the position leading to the lowest total tardiness. This operator
is a generalisation of the Move procedure of Schaller (2007), which only moves jobs
within batches of the same family. Our operator also allows to remove a job from

14

In order to estimate a promising shift in sequence positions, we divide each late-
ness value by the average processing time and calculate a new position index k⋆

j

by subtracting the calculated shift from the original position index kj by

k⋆
j = kj −

|J |Lj
∑

i∈J

pi
.

A new initial solution is obtained by ordering the jobs according to their values
k∗
j and using the original position index kj as a tie breaker.

5. Computational experiments

This section presents test instances and computational experiments conducted
to evaluate the proposed approach for both variants of the problem.

5.1. Test instances

Artificially instances are generated motivated from a real-world scheduling
problem in the steel industry. The generated instances share common charac-
teristics of the real-life problem, however, for confidentiality reasons, these char-
acteristics cannot be described in detail.

For each instance, a set of jobs J and a set of families F are generated. Each
family is randomly assigned one job and the remaining jobs are distributed across
the families according to a random distribution derived from the real-world prob-
lem that motivated this work. Figure 12 gives an illustration of this distribution.

In the real-world problem, processing times of a job depend on the setup family
and the production width. Therefore, for each setup family f ∈ F processing times
pf are randomly generated in the range between 2400 and 3000. Then, for each job
j in family f , the processing time pj is randomly generated in the range between
max(0.9pf , 2400) and min(1.1pf , 3000). Thus, processing times are similar for jobs
of equal setup family, but still vary as a result of the production width.

For each pair of families, setup times between any pair of jobs of these families
are randomly selected to be either 900 or 2700. This is also motivated from real
world instances, where a reduced setup time is possible in case certain character-
istics are given.

Motivated from the real problem instances, the resource demand qj of job j is
set to a random number in the range between 250 and 270.

The due date of jobs are set as follows. First, a sequence of jobs is generated
by grouping all jobs belonging to one family together, and ordering the groups in

18

0 10 20 30 40 50 60

Families

0

10

20

30

40

50

60

N
u
m

b
e
r

o
f

Jo
b
s
 i
n
 F

a
m

il
y

Figure 12: Distribution of jobs per setup family

descending number of jobs. This approach is similar to scheduling with the group
technology assumption (GTA). The resulting sequence minimises the number of
setups required. For this sequence we calculate the minimum total time t1 required
without resource constraints. Then, for each job j, the due date dj is randomly
set to a value between −0.25t1 and 1.25t1. This random selection of due dates
resembles the real-world situation, where some jobs are already delayed at the
beginning of the planning horizon. As a negative due date will contribute equally
to the total tardiness of any schedule, we replace negative due date values by zero.

In order to generate instances in which the resource constraint is not trivially
satisfied and does not always require waiting times, the supply rate r and the
initial inventory r∗ are determined as follows. Another sequence is generated in
which jobs are ordered according to their due dates, with the earliest due date
first. For this sequence we calculate the minimum total time t2 required without
resource constraints. For all instances we have t1 < t2 because more setups are
required. The supply rate r is chosen as r = 2

t1+t2

∑

j∈J qj. As shown in Figure 13,
the resource supply (without initial inventory) grows at a rate that is between
the average demand rates of the two sequences generated. The initial inventory

19

time

quantity

∑

j∈J

qj

t1 t1+t2
2

t2

r∗

r∗=0.75max
j∈J

{Qj−rCj}

r=
2

t1+t2

∑

j∈J

qj

Figure 13: Supply rate and initial inventory are derived from two ref-

erence sequences.

is now set to 75% of the largest difference between the cumulative demand of the
first sequence and the supply curve without initial inventory. As a result, the first
sequence, which minimises the total number of setups, would be infeasible without
additional waiting times. When searching for a solution with low total tardiness,
a good tradeoff between minimising the number of setups and minimising waiting
times thus has to be found.

5.2. Experiments

The solution approach presented in this paper is evaluated using the test
instances described above which are available at http://www.telematique.eu/

research/download. The experiments are conducted on an Intel Xeon(R) CPU
W3530 @ 2.80GHz X 4 with UBUNTU 14.04 64-bit operating system. To obtain
optimal solutions or lower bounds on the total tardiness the MIP formulated in
Section 3 was solved using the commercial solver CPLEX with version 12.6, one
thread, 2GB RAM, and a 10GB tree limit. Furthermore, a run time limit of 3600
seconds was used.

An initial sequence of jobs is obtained by ordering the jobs according to their
due dates. This sequence is given to both the MIP solver and the heuristic solution
approach as the initial solution. In the heuristic, the neighbourhood operators
are selected in a random order and whenever no further improvement is possible
with the chosen operator the next neighbourhood operator is selected. Based on

20

preliminary experiments we limited the iterated local search to three runs.
Tables 1 and 2 show average results for both variants of the problem and

detailed results for the individual instances are provided in the Appendix. In
Tables 1 and 2, each line shows average values of all instances with the same
number of jobs. The first column indicates the number of jobs. The second column
gives the average computation time (in seconds) required by the MIP solver. The
third column indicates the solution quality by providing the average percentage by
which the gap between the initial solution to the best lower bound is closed (GAP).
This value is computed as 100(T Start − TUB)/(T Start − T LB), where T Start denotes
the total tardiness of the initial solution, TUB denotes the total tardiness of the
best found solution, and T LB denotes the lower bound obtained by the MIP solver.
A value of 100 indicates that the gap is closed completely, i.e. that the solution is
optimal. The next two columns give the same information for the heuristic. The
last column indicates the ratio between the GAP value for the heuristic divided
by the GAP value for the MIP. A ratio larger than 1 indicates that the heuristic
outperforms the MIP.

MIP Heuristic

Jobs CPU GAP CPU GAP Ratio

8 6.69 100.00 0.01 100.00 1.00
10 868.35 100.00 0.02 100.00 1.00
12 3331.11 40.07 0.04 40.07 1.00
15 3600.00 44.49 0.07 44.48 1.00
20 3600.00 49.57 0.23 49.76 1.01
30 3600.00 42.93 0.93 48.97 1.14
40 3600.00 29.99 2.61 48.86 1.87
50 3600.00 18.05 5.07 51.10 3.26

Table 1: Average results for first problem variant

The MIP manages to find optimal solutions for the smaller instances with 8
or 10 jobs in 20 out of 20 cases for the first problem variant and 19 out of 20
cases for the second problem variant. For all of these small-sized instances, the
heuristic finds equally good solutions, however, the time required by the heuristic
to find these solutions is magnitudes lower. For instances with more than 10 jobs,
the MIP struggles closing the gap between the lower and upper bound and only
finds the optimal solution for one of the instances with 12 jobs and 3 families
and the first problem variant. This optimal solution is also found by the heuristic

21

MIP Heuristic

Jobs CPU GAP CPU GAP Ratio

8 17.63 100.00 0.17 100.00 1.00
10 1163.05 90.79 0.36 90.79 1.00
12 3326.04 39.06 0.62 39.06 1.00
15 3600.00 43.11 1.33 43.37 1.01
20 3600.00 47.53 3.54 48.66 1.03
30 3600.00 41.84 18.49 49.39 1.24
40 3600.00 29.36 61.70 49.43 1.98
50 3600.00 23.00 163.46 51.85 2.82

Table 2: Average results for second problem variant

approach.
In total, the heuristic is able to find equally good or better solutions for 77 of

80 instances for the first problem variant and for 79 of 80 instances for the second
problem variant. As the computational effort required by the heuristic is much
smaller than for the MIP solver, and typically takes only a few minutes or less,
the heuristic is well suited for application scenarios where human decision makers
want to obtain good schedules quickly.

6. Final remarks

This paper studies a single-machine family scheduling problem with sequence
dependent setup times and resource constraints. This problem differs from simi-
lar problems without resource constraints because both the optimal sequence and
the timing of jobs can be influenced by the resource constraint. We present a
mathematical formulation for two variants of the problem that differ in the way
necessary waiting times due to limited resource availability can be scheduled. We
present a heuristic approach for both problem variants and show how tardiness
can be evaluated. While tardiness evaluation is trivial if waiting times can be
scheduled between any pair of jobs, the evaluation is non-trivial if waiting times
can only be scheduled when a setup is performed. We present a labelling approach
to determine the optimal scheduling of additional setups and waiting times. Com-
putational experiments are conducted on instances derived from instances of a
practical problem in steel production that motivated the research. Our experi-
ments show that the proposed solution approach outperforms a state-of-the-art
mixed integer programming solver both in terms of solution quality and compu-

22

tation time. Furthermore, the solution approach is fast enough to be used in
practical scenarios where larger instances must be solved within a few minutes.

Throughout this paper we assumed that the resource is supplied and consumed
at a constant rate. While these assumptions are essential for the mathematical
formulation presented in this paper, the heuristic approach can easily be adapted
to be used for different application scenarios with arbitrary supply and demand.
Thus, the proposed solution approach can be used for a variety of multi-stage
production processes in which schedulers must take into account that a sufficient
amount of a required resource is supplied by upstream processes.

References

A. Allahverdi, C. Ng, T. Cheng, and M. Kovalyov. A survey of scheduling problems
with setups times or costs. European Journal of Operational Research, 187:985–
1032, 2008.

L.-P. Bigras, M. Gamache, and G. Savard. The time-dependent traveling salesman
problem and single machine scheduling problems with sequence dependent setup
times. Discrete Optimization, 5(4):685–699, 2008.

R. E. Box and D. G. J. Herbe. A scheduling model for LTV Steel’s Cleveland
Works’ twin strand continuous slab caster. Interfaces, 18(1):42–56, 1988.

D. Briskorn, B. C. Choi, K. Lee, J. Leung, and M. Pinedo. Complexity of sin-
gle machine scheduling subject to nonnegative inventory constraints. European
Journal of Operational Research, 207(2):605–619, 2010.

D. Briskorn, F. Jaehn, and E. Pesch. Exact algorithms for inventory constrained
scheduling on a single machine. Journal of Scheduling, 16:105–115, 2013.

M. Drótos and T. Kis. Scheduling of inventory releasing jobs to minimize a regular
objective function of delivery times. Journal of Scheduling, 16:337–346, 2013.

J. Du and J. Y.-T. Leung. Minimizing Total Tardiness on One Machine is NP-
Hard. Mathematics of Operations Research, 15(3):483–495, 1990.

H. Emmons. One-Machine Sequencing to Minimize Certain Functions of Job Tar-
diness. Operations Research, 17(4):701–715, 1969.

A. Grigoriev, M. Holthuijsen, and J. Van De Klundert. Basic scheduling problems
with raw material constraints. Naval Research Logistics, 52:527–535, 2005.

23

J. N. D. Gupta and S. Chantaravarapan. Single machine group scheduling with
family setups to minimize total tardiness. International Journal of Production
Research, 46(6):1707–1722, 2008.

S. R. Gupta and J. S. Smith. Algorithms for single machine total tardiness schedul-
ing with sequence dependent setups. European Journal of Operational Research,
175:722–739, 2006.

P. Györgyi and T. Kis. Approximability of scheduling problems with resource
consuming jobs. Mathematics of Operations Research, pages 1–21, 2014.

J. Holsenback and R. M. Russell. A heuristic algorithm for sequencing on one ma-
chine to minimize total tardiness. Journal of the Operational Research Society,
43(1):53–62, 1992.

C. Koulamas. The single-machine total tardiness scheduling problem: Review and
extensions. European Journal of Operational Research, 202(1):1–7, 2010.

E. L. Lawler. A ”Pseudopolynomial” Algorithm for Sequencing Jobs to Minimize
Total Tardiness. Annals of Discrete Mathematics, 1:331–342, 1977.

J. Lee and Y. Kim. A branch and bound algorithm to minimize total tardiness
of jobs in a two identical-parallel-machine scheduling problem with a machine
availability constraint. Journal of the Operational Research Society (to appear),
2015. URL http://dx.doi.org/10.1057/jors.2014.122.

C. J. Liao and H. C. Juan. An ant colony optimization for single-machine tardiness
scheduling with sequence-dependent setups. Computers & Operations Research,
34:1899–1909, 2007.

S.-W. Lin and K.-C. Ying. A hybrid approach for single-machine tardiness prob-
lems with sequence-dependent setup times. Journal of the Operational Research
Society, 59:1109–1119, 2008.

H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated Local Search. In F. Glover
and G. A. Kochenberger, editors, Handbook of Metaheuristics, pages 321–353.
Kluwer Academic Publishers, 2003.

Z. Lü and J.-K. Hao. A Critical Element-Guided Perturbation Strategy for Iterated
Local Search. In C. Carlos and P. Cowling, editors, Evolutionary Computation
in Combinatorial Optimization, pages 1–12. Springer, 2009.

24

A. Mensendiek, J. N. D. Gupta, and J. Herrmann. Scheduling identical parallel
machines with fixed delivery dates to minimize total tardiness. European Journal
of Operational Research, 243(2):514–522, 2015.

S. S. Panwalkar, M. Smith, and C. Koulamas. A heuristic for the single machine
tardiness problem. European Journal of Operational Research, 70(3):304–310,
Nov. 1993.

C. N. Potts and M. Y. Kovalyov. Scheduling with batching: A review. European
Journal of Operational Research, 120(2):228–249, Jan. 2000.

C. N. Potts and L. N. Van Wassenhove. Integrating scheduling with batching and
lot-sizing: a review of algorithms and complexity. Journal of the Operational
Research Society, 43(5):395–406, 1992.

J. E. Schaller. Scheduling on a single machine with family setups to minimize
total tardiness. International Journal of Production Economics, 105(2):329–
344, 2007.

J. E. Schaller. Note on Shim and Kim’s lower bounds for scheduling on identical
parallel machines to minimize total tardiness. European Journal of Operational
Research, 197(1):422–426, 2009.

J. E. Schaller. Minimizing total tardiness for scheduling identical parallel machines
with family setups. Computers & Industrial Engineering, 72:274–281, 2014.

J. E. Schaller and J. N. D. Gupta. Single machine scheduling with family setups
to minimize total earliness and tardiness. European Journal of Operational
Research, 187(3):1050–1068, June 2008.

T. Sen, J. M. Sulek, and P. Dileepan. Static scheduling research to minimize
weighted and unweighted tardiness: A state-of-the-art survey. International
Journal of Production Economics, 83:1–12, 2003.

S. O. Shim and Y. D. Kim. Scheduling on parallel identical machines to mini-
mize total tardiness. European Journal of Operational Research, 177(1):135–146,
2007.

A. Sioud, M. Gravel, and C. Gagné. A hybrid genetic algorithm for the single
machine scheduling problem with sequence-dependent setup times. Computers
& Operations Research, 39(10):2415–2424, 2012.

25

A. Subramanian, M. Battarra, and C. N. Potts. An Iterated Local Search heuris-
tic for the single machine total weighted tardiness scheduling problem with
sequence-dependent setup times. International Journal of Production Research,
52(9):2729–2742, 2014.

S. Tanaka and M. Araki. An exact algorithm for the single-machine total weighted
tardiness problem with sequence-dependent setup times. Computers & Opera-
tions Research, 40(1):344–352, 2013.

K. C. Ying, S. W. Lin, and C. Y. Huang. Sequencing single-machine tardiness
problems with sequence dependent setup times using an iterated greedy heuris-
tic. Expert Systems with Applications, 36:7087–7092, 2009.

26

Appendix

In this appendix detailed results for all instances are reported. Tables 3 to 10
give the results for the first problem variant and tables 11 to 18 give the results
for the second problem variant. In the tables the first column provides the name
of the instance. The names of the instances are formatted as |F |X|J | k where
k ∈ {1, 2, 3, 4, 5} is a counter to distinguish different instances with the same
number of jobs |J | and families |F |. The second column in the tables give the
total tardiness of the initial solution. The next columns present the results for the
MIP and the heuristic. The tables shows the calculation time (CPU), lower bound
obtained by CPLEX (LB), the upper bound (UP), and the degree to which the
gap between initial solution and lower bound is closed (GAP). The last column
indicates the ratio between the GAP value for the heuristic divided by the GAP
value for the MIP.

MIP Heuristic

Instance Start CPU LB UB GAP CPU UB GAP Ratio

2X8 1 34385 4.56 18877 18877 100.00 0.01 18877 100.00 1.00
2X8 2 56837 15.12 44955 44955 100.00 0.01 44955 100.00 1.00
2X8 3 48070 9.19 31017 31017 100.00 0.01 31017 100.00 1.00
2X8 4 18440 10.14 17980 17980 100.00 0.01 17980 100.00 1.00
2X8 5 12663 2.02 10976 10976 100.00 0.01 10976 100.00 1.00
3X8 1 31187 4.15 19301 19301 100.00 0.01 19301 100.00 1.00
3X8 2 13094 4.06 10206 10206 100.00 0.01 10206 100.00 1.00
3X8 3 23474 2.80 13428 13428 100.00 0.02 13428 100.00 1.00
3X8 4 72688 12.70 46737 46737 100.00 0.02 46737 100.00 1.00
3X8 5 26070 2.14 13288 13288 100.00 0.01 13288 100.00 1.00

Table 3: Results for first problem variant and instances with 8 jobs

27

MIP Heuristic

Instance Start CPU LB UB GAP CPU UB GAP Ratio

2X10 1 47382 904.40 32315 32315 100.00 0.02 32315 100.00 1.00
2X10 2 38918 272.97 32885 32885 100.00 0.02 32885 100.00 1.00
2X10 3 67083 2892.49 65092 65092 100.00 0.02 65092 100.00 1.00
2X10 4 15264 87.26 13267 13267 100.00 0.02 13267 100.00 1.00
2X10 5 41238 201.12 13912 13912 100.00 0.02 13912 100.00 1.00
3X10 1 76089 1823.74 69399 69399 100.00 0.02 69399 100.00 1.00
3X10 2 2474 0.01 2474 2474 100.00 0.02 2474 100.00 1.00
3X10 3 34244 32.45 20324 20324 100.00 0.02 20324 100.00 1.00
3X10 4 104453 2445.04 61680 61680 100.00 0.05 61680 100.00 1.00
3X10 5 11134 23.97 11134 11134 100.00 0.02 11134 100.00 1.00

Table 4: Results for first problem variant and instances with 10 jobs

MIP Heuristic

Instance Start CPU LB UB GAP CPU UB GAP Ratio

2X12 1 25118 3600.00 17852 25098 0.28 0.03 25098 0.28 1.00
2X12 2 47667 3600.00 23898 39105 36.02 0.04 39105 36.02 1.00
2X12 3 35935 3600.00 11893 28914 29.20 0.03 28914 29.20 1.00
2X12 4 178945 3600.00 31879 119712 40.28 0.03 119712 40.28 1.00
2X12 5 91028 3600.00 17237 56634 46.61 0.03 56634 46.61 1.00
3X12 1 43703 911.12 14311 14311 100.00 0.05 14311 100.00 1.00
3X12 2 93588 3600.00 7557 45907 55.42 0.05 45907 55.42 1.00
3X12 3 52192 3600.00 20071 37753 44.95 0.04 37753 44.95 1.00
3X12 4 99820 3600.00 33035 92382 11.14 0.04 92382 11.14 1.00
3X12 5 85266 3600.00 21865 61906 36.85 0.05 61906 36.85 1.00

Table 5: Results for first problem variant and instances with 12 jobs

MIP Heuristic

Instance Start CPU LB UB GAP CPU UB GAP Ratio

2X15 1 184932 3600.00 17470 129985 32.81 0.07 129985 32.81 1.00
2X15 2 140058 3600.00 15957 82638 46.27 0.06 82638 46.27 1.00
2X15 3 32087 3600.00 15442 19723 74.28 0.05 19723 74.28 1.00
2X15 4 99821 3600.00 19655 79116 25.83 0.06 77968 27.26 1.06
2X15 5 58282 3600.00 11719 38408 42.68 0.05 38408 42.68 1.00
3X15 1 71363 3600.00 17969 61801 17.91 0.08 61801 17.91 1.00
3X15 2 139214 3600.00 15113 69009 56.57 0.08 70371 55.47 0.98
3X15 3 91090 3600.00 18911 46056 62.39 0.09 46038 62.42 1.00
3X15 4 129206 3600.00 16917 97339 28.38 0.07 97339 28.38 1.00
3X15 5 120990 3600.00 13845 59049 57.81 0.09 59605 57.29 0.99

Table 6: Results for first problem variant and instances with 15 jobs

28

MIP Heuristic

Instance Start CPU LB UB GAP CPU UB GAP Ratio

3X20 1 213859 3600.00 12203 113884 49.58 0.14 113884 49.58 1.00
3X20 2 232565 3600.00 11406 120126 50.84 0.29 119947 50.92 1.00
3X20 3 34370 3600.00 8058 15877 70.28 0.20 15877 70.28 1.00
3X20 4 157437 3600.00 12156 133517 16.46 0.16 133213 16.67 1.01
3X20 5 298921 3600.00 10470 109031 65.83 0.32 109031 65.83 1.00
5X20 1 248468 3600.00 19956 112509 59.50 0.41 111518 59.93 1.01
5X20 2 29463 3600.00 10094 26839 13.55 0.15 26839 13.55 1.00
5X20 3 144960 3600.00 16530 73370 55.74 0.22 73370 55.74 1.00
5X20 4 164852 3600.00 14691 105378 39.61 0.25 102785 41.33 1.04
5X20 5 179782 3600.00 15168 57457 74.31 0.19 58338 73.78 0.99

Table 7: Results for first problem variant and instances with 20 jobs

MIP Heuristic

Instance Start CPU LB UB GAP CPU UB GAP Ratio

4X30 1 383922 3600.00 26344 289596 26.38 0.59 272091 31.27 1.19
4X30 2 474658 3600.00 18793 258057 47.51 0.72 211934 57.63 1.21
4X30 3 415739 3600.00 15754 214323 50.36 0.79 186776 57.24 1.14
4X30 4 585123 3600.00 33976 473219 20.30 0.74 467601 21.32 1.05
4X30 5 182577 3600.00 24333 120212 39.41 0.43 120016 39.53 1.00
5X30 1 473535 3600.00 20528 148943 71.65 0.86 128240 76.22 1.06
5X30 2 597635 3600.00 15373 253104 59.17 1.57 184523 70.95 1.20
5X30 3 138608 3600.00 18796 89143 41.29 1.31 89142 41.29 1.00
5X30 4 295655 3600.00 18512 193734 36.78 0.97 167339 46.30 1.26
5X30 5 370676 3600.00 17283 241883 36.44 1.30 201250 47.94 1.32

Table 8: Results for first problem variant and instances with 30 jobs

MIP Heuristic

Instance Start CPU LB UB GAP CPU UB GAP Ratio

4X40 1 448516 3600.00 16659 333716 26.58 2.43 204819 56.43 2.12
4X40 2 1087748 3600.00 25024 718270 34.77 1.93 517972 53.61 1.54
4X40 3 907995 3600.00 24433 594310 35.50 3.25 415286 55.76 1.57
4X40 4 737379 3600.00 24862 508421 32.13 1.84 328195 57.43 1.79
4X40 5 427109 3600.00 14346 395646 7.62 2.17 291773 32.79 4.30
5X40 1 541520 3600.00 21595 335475 39.63 4.39 266353 52.92 1.34
5X40 2 477325 3600.00 16843 383820 20.31 3.39 314847 35.28 1.74
5X40 3 542540 3600.00 30204 427408 22.47 2.39 371936 33.30 1.48
5X40 4 584405 3600.00 31807 398988 33.55 2.42 308586 49.91 1.49
5X40 5 854281 3600.00 24364 461592 47.32 1.90 346844 61.14 1.29

Table 9: Results for first problem variant and instances with 40 jobs

29

MIP Heuristic

Instance Start CPU LB UB GAP CPU UB GAP Ratio

4X50 1 1292112 3600.00 18109 1076345 16.94 6.60 564684 57.10 3.37
4X50 2 1545375 3600.00 27224 1233110 20.57 4.04 746021 52.65 2.56
4X50 3 1299467 3600.00 28791 924507 29.51 2.78 459813 66.08 2.24
4X50 4 240777 3600.00 13388 160716 35.21 3.55 74144 73.28 2.08
4X50 5 238753 3600.00 18431 227110 5.28 4.37 186472 23.73 4.49
5X50 1 1262438 3600.00 35471 1098889 13.33 8.79 559605 57.28 4.30
5X50 2 1112018 3600.00 27386 864738 22.80 3.82 462299 59.90 2.63
5X50 3 1044173 3600.00 26540 922890 11.92 4.67 574443 46.16 3.87
5X50 4 1307897 3600.00 28234 1211302 7.55 6.50 841724 36.43 4.83
5X50 5 379492 3600.00 15706 316076 17.43 5.64 239979 38.35 2.20

Table 10: Results for first problem variant and instances with 50 jobs

MIP Heuristic

Instance Start CPU LB UB GAP CPU UB GAP Ratio

2X8 1 34385 6.39 18877 18877 100.00 0.15 18877 100.00 1.00
2X8 2 56837 21.87 44955 44955 100.00 0.18 44955 100.00 1.00
2X8 3 48070 12.36 31517 31517 100.00 0.32 31517 100.00 1.00
2X8 4 18440 16.98 17980 17980 100.00 0.14 17980 100.00 1.00
2X8 5 12663 1.84 10976 10976 100.00 0.10 10976 100.00 1.00
3X8 1 31187 13.51 19838 19838 100.00 0.15 19838 100.00 1.00
3X8 2 13094 12.69 10206 10206 100.00 0.08 10206 100.00 1.00
3X8 3 23474 16.38 13428 13428 100.00 0.17 13428 100.00 1.00
3X8 4 72688 61.82 47171 47171 100.00 0.24 47171 100.00 1.00
3X8 5 26070 12.48 13832 13832 100.00 0.16 13832 100.00 1.00

Table 11: Results for second problem variant and instances with 8 jobs

MIP Heuristic

Instance Start CPU LB UB GAP CPU UB GAP Ratio

2X10 1 47382 1157.66 32315 32315 100.00 0.34 32315 100.00 1.00
2X10 2 38918 383.51 32885 32885 100.00 0.26 32885 100.00 1.00
2X10 3 68849 3600.00 37226 66365 7.86 0.80 66365 7.86 1.00
2X10 4 15264 120.43 13267 13267 100.00 0.29 13267 100.00 1.00
2X10 5 41238 303.09 13912 13912 100.00 0.38 13912 100.00 1.00
3X10 1 76089 2812.38 71879 71879 100.00 0.35 71879 100.00 1.00
3X10 2 2474 0.01 2474 2474 100.00 0.23 2474 100.00 1.00
3X10 3 34244 30.33 20324 20324 100.00 0.27 20324 100.00 1.00
3X10 4 104453 3189.47 62017 62017 100.00 0.38 62017 100.00 1.00
3X10 5 11134 33.63 11134 11134 100.00 0.33 11134 100.00 1.00

Table 12: Results for second problem variant and instances with 10 jobs

30

MIP Heuristic

Instance Start CPU LB UB GAP CPU UB GAP Ratio

2X12 1 25118 3600.00 15428 25098 0.21 0.34 25098 0.21 1.00
2X12 2 47963 3600.00 23240 39400 34.63 0.59 39400 34.63 1.00
2X12 3 35935 3600.00 11157 28914 28.34 0.54 28914 28.34 1.00
2X12 4 178945 3600.00 31407 121275 39.09 0.75 121275 39.09 1.00
2X12 5 91028 3600.00 16838 56634 46.36 0.41 56634 46.36 1.00
3X12 1 43703 860.41 14311 14311 100.00 0.63 14311 100.00 1.00
3X12 2 93588 3600.00 7509 45907 55.39 0.99 45907 55.39 1.00
3X12 3 52192 3600.00 17570 37753 41.71 0.59 37753 41.71 1.00
3X12 4 99820 3600.00 29121 93425 9.05 0.78 93425 9.05 1.00
3X12 5 85266 3600.00 20168 61906 35.88 0.56 61906 35.88 1.00

Table 13: Results for second problem variant and instances with 12 jobs

MIP Heuristic

Instance Start CPU LB UB GAP CPU UB GAP Ratio

2X15 1 184932 3600.00 17137 137271 28.40 1.81 136365 28.94 1.02
2X15 2 140058 3600.00 15296 85294 43.89 1.86 85294 43.89 1.00
2X15 3 32087 3600.00 15298 19723 73.65 1.17 19723 73.65 1.00
2X15 4 99821 3600.00 18892 79116 25.58 1.01 77968 27.00 1.06
2X15 5 58282 3600.00 11577 38408 42.55 0.98 38408 42.55 1.00
3X15 1 71363 3600.00 13672 61801 16.57 1.29 61801 16.57 1.00
3X15 2 139214 3600.00 14527 69009 56.30 1.13 68600 56.63 1.01
3X15 3 91090 3600.00 16869 46056 60.68 1.24 46038 60.70 1.00
3X15 4 129206 3600.00 15055 97339 27.92 1.42 97339 27.92 1.00
3X15 5 120990 3600.00 11004 59843 55.60 1.43 59605 55.81 1.00

Table 14: Results for second problem variant and instances with 15 jobs

MIP Heuristic

Instance Start CPU LB UB GAP CPU UB GAP Ratio

3X20 1 213859 3600.00 12198 121088 46.00 3.10 113884 49.58 1.08
3X20 2 232565 3600.00 11417 120211 50.80 4.11 119947 50.92 1.00
3X20 3 34370 3600.00 5351 16039 63.17 2.81 15877 63.73 1.01
3X20 4 157437 3600.00 12304 136330 14.54 2.94 133213 16.69 1.15
3X20 5 298921 3600.00 12262 111187 65.49 5.86 110890 65.59 1.00
5X20 1 248468 3600.00 19786 118413 56.87 3.96 113190 59.16 1.04
5X20 2 29463 3600.00 6501 26926 11.05 2.58 26839 11.43 1.03
5X20 3 144960 3600.00 16523 74693 54.71 3.11 73370 55.74 1.02
5X20 4 164852 3600.00 14034 103904 40.41 3.02 103848 40.45 1.00
5X20 5 179782 3600.00 13033 59238 72.29 3.91 57457 73.36 1.01

Table 15: Results for second problem variant and instances with 20 jobs

31

MIP Heuristic

Instance Start CPU LB UB GAP CPU UB GAP Ratio

4X30 1 383922 3600.00 28934 291619 26.00 13.01 272091 31.50 1.21
4X30 2 474658 3600.00 18904 267758 45.40 15.29 211934 57.65 1.27
4X30 3 415739 3600.00 13333 203917 52.64 17.44 186776 56.90 1.08
4X30 4 585123 3600.00 34416 478201 19.42 36.11 472810 20.39 1.05
4X30 5 182577 3600.00 28876 113325 45.06 13.22 112537 45.57 1.01
5X30 1 473535 3600.00 20542 157234 69.82 15.39 128240 76.23 1.09
5X30 2 597635 3600.00 15380 278580 54.80 27.95 173973 72.76 1.33
5X30 3 138608 3600.00 9742 91926 36.23 11.04 89142 38.39 1.06
5X30 4 295655 3600.00 21088 238879 20.68 18.29 167339 46.73 2.26
5X30 5 370676 3600.00 15848 199211 48.32 17.19 201250 47.75 0.99

Table 16: Results for second problem variant and instances with 30 jobs

MIP Heuristic

Instance Start CPU LB UB GAP CPU UB GAP Ratio

4X40 1 448516 3600.00 16753 260164 43.62 64.88 193123 59.15 1.36
4X40 2 1087748 3600.00 38729 631518 43.49 66.47 516971 54.41 1.25
4X40 3 907995 3600.00 28181 596225 35.44 80.53 415286 56.00 1.58
4X40 4 737379 3600.00 36086 401698 47.87 44.37 327955 58.38 1.22
4X40 5 427109 3600.00 23009 379259 11.84 49.44 291773 33.49 2.83
5X40 1 541520 3600.00 24964 414032 24.68 54.26 274822 51.63 2.09
5X40 2 477325 3600.00 18291 397658 17.36 82.36 314847 35.40 2.04
5X40 3 542540 3600.00 38382 443310 19.68 53.21 371825 33.86 1.72
5X40 4 584405 3600.00 32707 515776 12.44 61.66 308586 49.99 4.02
5X40 5 854281 3600.00 25470 545737 37.23 59.87 340627 61.97 1.66

Table 17: Results for second problem variant and instances with 40 jobs

MIP Heuristic

Instance Start CPU LB UB GAP CPU UB GAP Ratio

4X50 1 1292112 3600.00 20559 937265 27.91 185.03 564684 57.21 2.05
4X50 2 1545375 3600.00 28124 1110273 28.68 290.58 725538 54.03 1.88
4X50 3 1299467 3600.00 28136 921995 29.69 178.34 459813 66.05 2.22
4X50 4 240777 3600.00 1268 143026 40.81 108.90 67224 72.46 1.78
4X50 5 238753 3600.00 0 217513 8.90 79.78 173330 27.40 3.08
5X50 1 1262438 3600.00 38171 921350 27.86 214.52 547790 58.37 2.10
5X50 2 1112018 3600.00 17104 813778 27.24 103.29 450561 60.41 2.22
5X50 3 1044173 3600.00 27440 873744 16.76 194.33 571162 46.52 2.78
5X50 4 1307897 3600.00 31732 1246993 4.77 205.41 824250 37.90 7.94
5X50 5 379492 3600.00 13532 315834 17.39 74.48 239979 38.12 2.19

Table 18: Results for second problem variant and instances with 50 jobs

32

