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Abstract

In this paper we study time-dependent scheduling problems where activities consume a re-

source with limited availability. Activity durations as well as resource consumptions are assumed

to be time-dependent and the resource can be replenished between activities. Because of the

interaction of time-dependent activity durations and resource consumptions, scheduling policies

based on starting all activities as early as possible may fail due to unnecessarily high resource

consumptions. We propose a dynamic discretization discovery algorithm that generates a par-

tially time-expanded network during the search. We propose preloading techniques allowing to

significantly reduce the computational effort if the approach is embedded in an iterative solution

procedure that frequently evaluates activity sequences that start with the same activities. We eval-

uate our approaches on a case of routing a fleet of electric vehicles in which vehicles can recharge

batteries during the route.

Keywords: time-dependent scheduling, resource constraints, break scheduling, preventive main-

tenance, electric vehicle routing

1 Introduction

Many operational activities consume some kind of resource throughout their execution. For example,

engines used for executing activities consume energy. With the increasing replacement of internal

combustion engines by battery electric propulsion systems, the limited battery capacity has to be
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considered when scheduling activities and it must be ensured that all activities can be executed without

running out of energy (see, e.g., Pelletier et al. 2016). Similarly, the time required by a human operator

can be seen as a resource that is consumed throughout the execution of activities and which is limited

by work regulations (see, e.g., Federal Motor Carrier Safety Administration 2011, European Union

2003). Also machine times may be limited between preventive maintenance processes or inspection

intervals, for example, aircrafts must be inspected before a total flight time of a given limit is reached

(Legal Information Institute 2020).

In this paper we study the problem of scheduling a sequence of activities where activities con-

sume a limited resource throughout execution. We assume that both activity durations and resource

consumptions depend on the time of execution. A major cause of time-dependent activity durations

and resource consumption is congestion, which can have a significant impact on the duration required

to complete certain activities. In the 15 largest urban areas in the United States, for example, travel

times on freeways are 44 percent higher during peak periods than during free flow times (Schrank

et al. 2019). Similarly, in warehouses and manufacturing facilities, congestion can occur due to space

limitations and narrow aisles (Zhang et al. 2009). Thus the time required for picking activities or

moving a forklift may vary over the course of the day. Time-dependent durations may also occur for

other reasons. For example, the total trip duration of a public transport user includes waiting time

until the next scheduled departure and the actual travel time. Thus, the total trip duration depends on

the time of the day and can be represented as time-dependent function (Rest and Hirsch 2016). In

satellite imagery, as another example, the relative position of the satellite to an object on the earth

surface depends on the position of the satellite in the orbit and the time required to tilt the satellite

accordingly can be represented by a time-dependent function (Liu et al. 2017).

Time-dependent activity durations can have various ramifications that have received very little

attention in the scientific literature. Consider, for example, the case of electric forklifts or vehicles.

If activity durations and energy consumptions are time-dependent, the timing of the activities can

be of particular importance in order to ensure that the total energy consumption of a sequence of

activities stays below the total energy provided by the battery. Similarly, in the case of limited working

times, the total working time of an operator may exceed the maximum working time allowed if

most activities are conducted during peak-hours. Thus, activities may have to be shifted away from
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peak-hours in order not to exceed the legal limits on the working time. Therefore, the commonly

used scheduling policy to schedule activities as early as possible may fail due to unnecessarily high

resource consumptions.

Sometimes resources can be regenerated after they have been consumed. For example, an electric

battery can be recharged, a human operator can take a rest as required by working regulations, or a

maintenance process can reset the machine time available until the next maintenance is needed. In

order to accommodate for such cases, we also study the problem of jointly scheduling activities and

replenishments.

The contributions of this paper are: 1) we introduce the time-dependent activity scheduling prob-

lem with resource constraints; 2) we show that an optimal solution can easily be found if activity du-

rations fulfil the the so-called first in first out (FIFO) property, i.e the property that an earlier start time

implies an earlier or equal completion time, and resource consumption functions are non-decreasing

in time; 3) we propose a dynamic discretization discovery algorithm for solving the problem in the

more general case of non-monotonous consumption functions; 4) we extend the approach to the case

where resources can be replenished between activities; 5) we propose an acceleration technique for

iterative problem solving by preloading vertices of the partially expanded network obtained from a

previous iteration; 6) we propose new benchmark instances for time-dependent vehicle routing with

electric vehicles; 7) we evaluate the algorithms on these benchmark instances.

2 Related work

Resources that are consumed throughout the course of activities can be found in various scheduling

problems. Often a capacity limit is given on such resources and the total consumption must not exceed

the capacity. In the case where each activity has a constant resource consumption, the total resource

consumption can easily be obtained by summing up the constants. This is for example the case in

the capacitated vehicle routing problem (see, e.g., Irnich et al. 2014) where the maximum load of the

vehicle can be interpreted as a resource that is depleted by the customer demands. In the multi-trip

vehicle routing problem (see, e.g., Fleischmann 1990, Taillard et al. 1996, Cattaruzza et al. 2014),

this full capacity of the resource can be restored when the vehicle returns to the depot. Schiffer et al.
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(2019) provide a recent review of vehicle routing problems in which vehicle routes include stops for

replenishments, refueling, and breaks.

For route planning problems with battery-powered vehicles (see, e.g., Pelletier et al. 2016), the

energy consumption of the vehicles depends on the distance travelled. Therefore, minimising route

distances will help to create routes that can be conducted without running out of energy. Recharging

the battery may be possible in order to increase the range of a vehicle. Schneider et al. (2014) study

a vehicle routing problem in which electric vehicles can visit charging stations during the routes

to recharge the battery. Unlike Schneider et al. (2014) who assume that the battery is always fully

recharged, Felipe et al. (2014) allow to partially recharge the battery. Sweda et al. (2017) find optimal

recharging policies for a given route determining when to recharge as well as the amount of energy

charged. Montoya et al. (2017) consider non-linear charging functions and optimise where and which

amount to charge. Baum et al. (2019) find optimal routes on road networks for a realistic distribution

of charging stations as well as non-linear charging functions allowing partial recharging.

In the vehicle routing and truck driver scheduling problem (see, e.g., Tilk and Goel 2020, Goel

and Vidal 2014, Prescott-Gagnon et al. 2010, Goel 2009), vehicle routes have to be generated in such

a way that all customers can be visited within time windows and all routes can be executed without

violating government regulations with respect to driving time limits. According to these regulations,

truck drivers have to take breaks and rest periods at regular intervals. The remaining time without

a break or rest period can be regarded as a resource that is consumed when driving. Although the

driving time between two customers is assumed to be a given constant, time windows for customer

visits may make it impossible to always drive as long as allowed by the regulations and only take

breaks or rests when the legal driving time limits are reached. Instead, determining feasibility of each

route requires the solution of a truck driver scheduling problem (see, e. g., Archetti and Savelsbergh

2009, Goel 2014; 2010, Goel and Kok 2012, Goel and Rousseau 2012, Goel et al. 2012). Minimising

schedule durations is an even more complicated problem that is studied, for example, by Kok et al.

(2011), Goel (2012b;c;a), and Rancourt et al. (2013).

Most of the above-mentioned studies assume that activity durations are given as constant val-

ues. In many real-life applications, however, the duration of activities depends on the time of the

day. Scheduling problems with time-dependent processing times have been surveyed by Cheng et al.
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(2004) and Alidaee and Womer (1999). Vidal et al. (2015) review activity scheduling problems

in which timing decisions are of particular importance and possibly time-dependent. Stecco et al.

(2008) study a scheduling problem where setups with a time dependent duration are required be-

tween pairs of jobs and formulate the problem as a time-dependent traveling salesman problem. The

time-dependent traveling salesman problem is also studied, e.g., by Nannicini et al. (2012), Montero

et al. (2017), Cordeau et al. (2014), Taş et al. (2016). Vu et al. (2020) apply dynamic discretization

discovery, originally proposed by Boland et al. (2017), for the time-dependent traveling salesman

problem with time windows. Dynamic discretization discovery works on a time-expanded network,

where only a small fraction of the vertices in the time-expanded networks is actually generated. For

the case of arc costs which are non-decreasing in time, Vu et al. (2020) provide criteria allowing to

prove optimality of a solution in the partially expanded network. He et al. (2019) also apply dynamic

discretization discovery, but for the time-dependent shortest path problem. For the case of piecewise

linear travel times satisfying the FIFO property, they propose an improvement of the dynamic dis-

cretization discovery based on an observation in Foschini et al. (2012) allowing to explore only a

small fraction of breakpoints of the arc travel time functions.

A survey on vehicle routing problems with time-dependent travel times given by Gendreau et al.

(2015). Dabia et al. (2013) present an exact approach for the time-dependent vehicle routing prob-

lem. Hashimoto et al. (2008) propose a method to determine an optimal time schedule for a route

where travel times and costs are piecewise linear and lower semi-continuous time-dependent func-

tions. Visser and Spliet (2020) show how ready time functions can be determined efficiently by

composition of piecewise linear travel time functions.

The research concerning time-dependent activity duration and the consumption of limited re-

sources which may have to be replenished is scarce. Drezet and Billaut (2008) analyse a project

scheduling problem with time-dependent activity requirements and workers, which obey French

workforce regulations and have various skill sets. A mixed-integer programing formulation and

heuristic solution approaches are presented. For home health care, Rest and Hirsch (2016) present

a scheduling approach considering break requirements for healthcare personnel assuming that staff

members use a combination of walking and public transport. Travel times with public transport are

modelled as time-dependent functions, where staff members may have to wait for the next tram, train,
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or metro. The scheduling of breaks is conducted based on heuristic rules. Kok et al. (2011) present

a mixed-integer program for the problem of finding a schedule of minimal duration for a truck driver

who must take breaks as required by European Union regulations. The problem is extended by time-

dependent travel times and used as a subproblem for route evaluations within an insertion heuristic.

The subproblem is solved with a general purpose mixed-integer programming solver. Kleff (2019)

studies the problem of finding a time-dependent shortest path from an origin to a destination in which

breaks can be taken at parking lots in the network. The driving time is limited by European Union reg-

ulations. An approach combining forward exploration from the origin to a parking lot and backwards

exploration from the destination to a parking is presented.

3 Problem description

Let us consider a sequence of activities (1, 2, . . . , n) to be conducted in the given order and without

preemption. The time-dependent duration and resource consumption of each activity i are given by

functions τi(ti) and ρi(ti), respectively, where ti refers to the start time of the activity. Each activity i

must start within a given time interval [ei, li] and the cumulative resource consumption must not

exceed a given quantity Q. With θi(ti) = ti + τi(ti) for all i ∈ {1, ..., n}, the time-dependent activity

scheduling problem (TDASP) can be represented by

minimise

θn(tn) (1)

subject to

θi(ti) ≤ ti+1 for all 1 ≤ i < n (2)

n∑
i=1

ρi(ti) ≤ Q (3)

ti ∈ [ei, li] for all 1 ≤ i ≤ n (4)

The objective (1) is to minimise the completion time. Constraint (2) demands that the start time

of any activity must not be before the completion time of the previous activity. Constraint (3) requires

that the cumulative resource consumption does not exceed the available amount. Lastly, the domain

of the variables is given by (4).
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Throughout this paper we assume that the completion time functions θi(·) are non-decreasing

for all i ∈ {1, ..., n}, meaning that completion times satisfy the FIFO property. Without loss of

generality we assume in the remainder of this paper that time windows are restricted in such a way

that θi(ei) ≤ ei+1 and θi(li) ≤ li+1 for all 1 ≤ i < n.

Lemma 1 Assume we have a sequence t1, t2, . . . , tn with t1 = e1 and ti = max{θi−1(ti−1), ei} for

each 1 < i ≤ n. If ρi(·) is non-decreasing for 1 ≤ i ≤ n and constraints (2) to (4) are satisfied, then

t1, t2, . . . , tn is an optimal solution of the TDASP. If any of the constraints (2) to (4) is violated no

feasible solution exists.

Proof. As the completion time functions θi(·) are non-decreasing by the FIFO property, the proof is

trivial for non-decreasing resource consumption functions ρi(·).

Resource consumption functions can be non-decreasing in scheduling problems with deterioration

(see, e.g., Mosheiov 1994). However, in other cases, the resource consumption may, e.g., depend on

congestion levels and vary throughout the day. In such cases it may be possible to reduce the total

resource consumption by delaying the start time of some of the activities. In the following sections we

present solution approaches for cases in which resource consumption functions are not monotonous.

3.1 Time-expanded networks

An approximation of the solution of the TDASP can be obtained by discretising time and modelling

the problem as a time-expanded network. Let us assume we are given a parameter ε > 0 for which

ei and li are a multiple of ε for each activity i. Then, we can create for each activity i and each

time point ti ∈ {ei, ei + ε, . . . , li} a vertex (i, ti) in the time-expanded network. The edges of the

time-expanded network are obtained by connecting every vertex (i, ti) with vertex (i + 1, ti+1) if

and only if ti+1 ≥ θi(ti). Figure 1 illustrates such a time-expanded network with vertex sets Vi for

each 1 ≤ i ≤ n.

When setting q(i,t) = ρi(t) for all (i, t) ∈ V =
⋃n
i=1 Vi, we can solve the TDASP by calling the

function solve
(
V,
(
q(i,t)

)
(i,t)∈V

)
shown in Algorithm 1. Note, that we could have simply used ρi(t)

instead of q(i,t) in the algorithm, however, the used notation allows us in the following sections to use

different values of q(i,t) to accelerate the search.
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Data: (ei, li, τi, θi, ρi)i∈{1,...,n}, Q

1 Function TEN ::solve
(
V,
(
q(i,t)

)
(i,t)∈V

)
2 V̄ ← ∅

3 foreach (i, t) ∈ V do

4 `(i,t) ←

 0 if i = 1

∞ else

5 end

6 while exists (i, t) ∈ V \ V̄ with `(i,t) + q(i,t) ≤ Q do

7 (i, t)← argminlex

(i,t)∈V \V̄ :`(i,t)+q(i,t)≤Q

{(
θi(t) +

n∑
j=i+1

min
t′∈[ej ,lj ]

τj(t
′), i, t

)}
8 V̄ ← V̄ ∪ {(i, t)}

9 if i = n then break

10 foreach t′ ∈ {t′ | (i+ 1, t′) ∈ V \ V̄ , θi(t) ≤ t′} do

11 if `(i,t) + q(i,t) < `(i+1,t′) then

12 `(i+1,t′) ← `(i,t) + q(i,t)

13 p(i+1,t′) ← (i, t)

14 end

15 end

16 end

17 return solution
(
V̄ , (qv, `v, pv)v∈V̄

)
18 end

Algorithm 1: Solving the TDASP in a time-expanded network
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Figure 1: A time-expanded network

The algorithm is similar to an A*-Algorithm for shortest path problems (Hart et al. 1968). How-

ever, labels are not related to objective function values. Instead, labels indicate the cumulative re-

source consumption until the start of each activity at a particular time. The algorithm starts with

initializing a set of vertices V̄ for which the label is permanently set. It tentatively sets all labels

associated to the first activity to zero, and all other labels to infinity. As long as there is a vertex in

V \ V̄ which has a label allowing to conduct the activity without exceeding the capacity, the algorithm

selects such a vertex (i, t) ∈ V \ V̄ according to a lexicographical ordering on the lower bound on

the completion time of the last activity, the activity index, and the time associated to the vertex. The

lexicographical ordering is necessary to ensure that all relevant predecessors are considered before

selecting a vertex. The selected vertex is inserted in V̄ . If the selected vertex belongs to the last activ-

ity, the algorithm terminates. Otherwise, non-permanent labels of the next activity are updated if their

value can be reduced. Whenever a label is updated, the predecessor pv for the vertex is updated so that

the solution can be reconstructed by a function solution
(
V̄ , (qv, `v, pv)v∈V̄

)
. If a solution is found,

this function returns the vertices of the solution obtained by selecting the earliest vertex (n, t) with

`(n,t) + q(n,t) ≤ Q and iterating through its predecessors. If no solution is found, the function returns{
(1,∞), . . . , (n,∞)

}
. For brevity reasons we omit a detailed description of this trivial function.

Lemma 2 Algorithm 1 finds an optimal solution of the TDASP restricted to the time-expanded net-

work with vertex set V if and only if such a solution exists.
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Proof. Assume that vertex (i, t) is selected in an iteration of the algorithm. Due to the FIFO property,

each potential predecessor of (i, t) must have been selected in an earlier iteration. Thus, `(i,t) repre-

sents the minimal cumulative resource consumption before conducting activity i at time t. If (n, t) is

selected and `(n,t) + q(n,t) ≤ Q, then t is the earliest time for which `(n,t) + q(n,t) ≤ Q. Thus, the

solution obtained by backtracking the predecessors is optimal. If the algorithm terminates without

having selected a vertex (n, t) with `(n,t) + q(n,t) ≤ Q, then there is no path (1, t1), . . . , (n, tn) with

(i, ti) ∈ V for i ∈ {1, . . . , n}, θi(ti) ≤ ti+1 for i ∈ {1, . . . , n− 1}, and
∑n

i=1 q(i,ti) ≤ Q.

3.2 Dynamic Discretization Discovery

The difficulty in solving the TDASP with discretized times is that the number of vertices in the time-

expanded network can become very large for small values of ε, i.e. the parameter influencing the

granularity of the time discretization. In order to reduce the number of vertices we now show how to

solve the TDASP with discretized times on a partially expanded network similar to the dynamic dis-

cretization discovery approach by Vu et al. (2020) for the time-dependent traveling salesman problem

with time windows. Unlike Vu et al. (2020), who assume that arc costs are non-decreasing in time,

we assume that resource consumption functions can be non-monotonous. In the remainder of this

section we will refer to a partially expanded network if the set of vertices V is a subset of the vertices

of the fully expanded network and the set of edges is obtained by connecting every vertex (i, ti) with

vertex (i+ 1, ti+1) if and only if ti+1 ≥ θi(ti). Our approach will generate and modify such partially

expanded networks with the following properties.

Property 1 For each 1 ≤ i ≤ n we have (i, ei) ∈ V and (i, li) ∈ V .

Property 2 For each vertex (i, t) ∈ V with ei+1 < ε
⌈
θi(t)
ε

⌉
< li+1, we have

(
i+1, ε

⌈
θi(t)
ε

⌉)
∈ V .

Property 3 Each vertex (i, t) ∈ V with t < li is assigned a consumption value of

q(i,t) = min
t̄∈{t,t+ε,...,t′−ε}

ρi(t̄)

where t′ > t is the smallest value for which (i, t′) ∈ V . Each vertex (i, li) ∈ V is assigned a

consumption value of q(i,li) = ρi(li).

Property 1 guarantees that for each activity i, a vertex representing the earliest and latest start time

is included in the partially expanded network. For every vertex, its immediate successor is included
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in the partially expanded network if Property 2 is satisfied. Because of Property 3, each vertex (i, t)

is assigned a value q(i,t), which is a lower bound on the actual resource consumption of the activity

for any start time between t and t′ − ε, where t′ refers to the next vertex of activity i.

With these properties we can make the following observation.

Lemma 3 The optimal solution of a TDASP restricted to a partially expanded network satisfying

Properties 1 to 3 is a lower bound on the optimal solution of the fully expanded TDASP with dis-

cretized times.

Proof. Assume that vertices (1, t1), . . . , (n, tn) correspond to an optimal solution of the fully ex-

panded TDASP with discretized times. Because of Properties 1 and 2, we can find a path (1, t′1),

. . . , (n, t′n) in the partially expanded network, where for each 1 ≤ i ≤ n the value t′i is the largest

while not exceeding ti such that (i, t′i) is in the partially expanded network. Because of Property 3,

we have q(i,t′i)
≤ ρi(ti) for each 1 ≤ i ≤ n and

∑n
i=1 q(i,t′i)

≤
∑n

i=1 ρi(ti) ≤ Q. Therefore, (1, t′1),

. . . , (n, t′n) is feasible for the TDASP restricted to the partially expanded network and has a com-

pletion time that is smaller or equal to the solution of the fully expanded TDASP with discretized

times.

Lemma 4 Assume that the path (1, t1), . . . , (n, tn) corresponds to an optimal solution of the TDASP

restricted to a partially expanded network satisfying Properties 1 to 3. Furthermore, assume that

q(i,ti) = ρi(ti) for each 1 ≤ i ≤ n. Then, the path corresponds to an optimal solution of the fully

expanded TDASP with discretized times.

Proof. If q(i,ti) = ρi(ti) for each 1 ≤ i ≤ n, then
∑n

i=1 ρi(ti) =
∑n

i=1 q(i,ti) ≤ Q. Therefore,

(1, t1), . . . , (n, tn) is feasible for the TDASP with discretized times. Because of Lemma 3 we can

conclude that the path corresponds to an optimal solution of the TDASP with discretized times.

We can use Algorithm 2 to create an initial partially expanded network. According to Property 1,

the algorithm adds vertices corresponding to each activity at the start and end of the time window.

These vertices are added in the order (n, ln), (n, en), . . . , (1, l1), (1, e1) and their immediate succes-

sors are recursively added according to Property 2. When adding a vertex (i, t) the consumption

values of the new vertex and the preceding vertex (i, t′) are set as required by Property 3.
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Data: (ei, li, τi, θi, ρi)i∈{1,...,n}, Q, ε

1 Function DDD ::initialise()

2 V ← ∅

3 for i← n to 1 do

4
(
V, (qv)v∈V

)
← DDD ::addRecursive

(
V, (qv)v∈V , (i, li)

)
5

(
V, (qv)v∈V

)
← DDD ::addRecursive

(
V, (qv)v∈V , (i, ei)

)
6 end

7 return
(
V, (qv)v∈V

)
8 end

9 Function DDD ::addRecursive
(
V, (qv)v∈V , (i, t)

)
10 if (i, t) ∈ V then return

(
V, (qv)v∈V

)
11 V ← V ∪ {(i, t)}

12 if t = li then

13 q(i,t) ← ρi(t)

14 else

15 t′ ← min{t′ | (i, t′) ∈ V, t′ > t}

16 q(i,t) ← min
t̄∈{t,t+ε,...,t′−ε}

ρi(t̄)

17 if t > ei then

18 t′ ← max{t′ | (i, t′) ∈ V, t′ < t}

19 q(i,t′) ← min
t̄∈{t′,t′+ε,...,t−ε}

ρi(t̄)

20 end

21 end

22 if i = n then

23 return
(
V, (qv)v∈V

)
24 else

25 return DDD ::addRecursive
(
V, (qv)v∈V ,

(
i+ 1,max{ei+1, ε

⌈ θi(t)
ε

⌉
}
))

26 end

27 end

Algorithm 2: Initialising a partial time-expanded network
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Data: (ei, li, τi, θi, ρi)i∈{1,...,n}, Q, ε

1 Function DDD ::solve()

2
(
V, (qv)v∈V

)
← DDD ::initialise()

3 repeat

4
{

(1, t1), . . . , (n, tn)
}

= TEN ::solve
(
V, (qv)v∈V

)
5 if tn =∞ then break

6 if exists 1 ≤ i ≤ n with ρi(ti) > q(i,ti) then

7 select (i, ti) with ρi(ti) > q(i,ti)

8 t← min{t′ | t′ > ti, (i, t
′) ∈ V }

9 repeat

10 t← εd ti+t2ε e

11 until min
t̄∈{ti,ti+ε,...,t−ε}

ρi(t̄) > q(i,ti)

12
(
V, (qv)v∈V

)
← DDD ::addRecursive

(
V, (qv)v∈V , (i, t)

)
13 end

14 until ρi(ti) = q(i,ti) for all 1 ≤ i ≤ n

15 return
{

(1, t1), . . . , (n, tn)
}

16 end

Algorithm 3: Dynamic discretization discovery algorithm

Algorithm 3 solves the TDASP with discretized times by dynamically creating a time-expanded

network. The algorithm starts by initialising the network using Algorithm 2. Then it iterates until a

solution of the TDASP with discretized times is found. Each iteration begins with finding a solution

of the TDASP restricted to the partially expanded network using Algorithm 1. If there is an activity i

in the solution that begins at a time t such that ρi(t) > q(i,t), then the total consumption associated

with the solution may exceed the capacity. Therefore, a new vertex is added to the partially expanded

network between (i, t) and the next vertex of activity i. The time for the new vertex is selected in

such a way that the value of q(i,ti) is increased when adding the new vertex.

If a feasible solution exists, the algorithm either terminates with the optimal solution, or adds

at least one vertex to the partially expanded network in each iteration. Therefore, the algorithm is
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guaranteed to terminate with the optimal solution. In the worst case, the algorithm may have to fully

expand the network. However, in general, the algorithm can be expected to require only a fraction of

the vertices.

4 Replenishments

So far we assumed that the resource cannot be used after it has been consumed by the activities. This

is the case, for example, if electric batteries cannot be recharged or if maximum working hours or

operating times are reached. In many cases, however the resource can be regenerated. For example,

electric batteries can be recharged, workers are allowed to work again after taking a sufficiently

long break, or machines can be used again after some maintenance has been conducted. In this

section we consider an extension of the TDASP in which the resource can be replenished between

the end of an activity and the begin of the next activity. We assume that the time required to fully

replenish a resource after conducting activity i can be determined by a consumption-dependent and

non-decreasing replenishment function ∆i(Qi), where Qi is the cumulative resource consumption

after completing activity i.

The resulting time-dependent activity scheduling problem with replenishments (TDASPR) is to

minimise

θn(tn) (5)

subject to

θi(ti) + yi∆i(Qi) ≤ ti+1 for all 1 ≤ i < n (6)

Q1 = ρ1(t1) (7)

Qi+1 = (1− yi)Qi + ρi+1(ti+1) for all 1 ≤ i < n (8)

ti ∈ [ei, li], Qi ∈ [0, Q], yi ∈ {0, 1} for all 1 ≤ i ≤ n. (9)

In this problem Qi is a variable representing the cumulative resource consumption between the last

replenishment and completion of activity i, and yi is a binary variable representing whether the re-

source is replenished after conducting activity i. The objective function is the same as in the case

without replenishments. Constraint (6) is analogous to Constraint (2) but includes the replenishment

14



duration if necessary. Constraints (7) and (8) ensure that the cumulative resource consumption is

correctly determined and Constraints (9) restricts the domains of the variables.

The special case where replenishments must or must not be taken after some of the activities is

covered in Appendix B.

4.1 Replenishments in time-expanded networks

In the following we show how dynamic discretization discovery can be used to solve the TDASPR.

For this, we replace Algorithm 1 by Algorithm 4 which dynamically adds new vertices corresponding

to a fully replenished resource to the partially expanded network.

Whenever a vertex (i, t) with i < n is selected in Algorithm 4, the algorithm determines the

earliest replenishment time t∗ after conducting activity i at time t. If t∗ ≤ li+1, the vertex (i+ 1, t∗)

is added to V using algorithm DDD ::addRecursive. Then, all labels for vertices with a time prior to

t∗ are updated if their value can be reduced and all labels for vertices with a later time are set to zero.

Lemma 5 Assume that Algorithm 4 is applied to a partially expanded network satisfying Properties 1

to 3. Then, the solution of the algorithm is a lower bound on the solution in the fully expanded

network.

Proof. Let us first note that the solution returned by Algorithm 4 is the same as the solution returned

by Algorithm 4 without Line 9. For the ease of argumentation, we therefore base our proof on a

variant of Algorithm 4 without Line 9. Let (1, t1), . . . , (n, tn) denote an optimal solution in the

fully expanded network. Let V̄ denote the set of permanently labelled vertices after execution of this

variant of the algorithm, including the vertices that may have been added to V during the course of the

algorithm. Let (1, t̄1), . . . , (n, t̄n) ∈ V̄ denote the vertices returned by the algorithm. Analogously

to Lemma 2 we can show that t̄n is smaller or equal to the completion time of any other path through

vertices in V̄ not exceeding the capacity between replenishments.

Let (1, t′1), . . . , (n, t′n) denote the vertices in V̄ for which t′i is the largest time not exceeding ti

for each i ∈ {1, . . . , n}. These vertices can be found because of Property 1. As θi is non-decreasing

for each i ∈ {1, . . . , n}, Property 2 guarantees that θi(t′i) ≤ t′i+1 for i ∈ {1, . . . , n− 1}.
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Data: (ei, li, τi, θi, ρi,∆i)i∈{1,...,n}, Q, ε

1 Function TEN-∆::solve
(
V,
(
q(i,t)

)
(i,t)∈V

)
2 V̄ ← ∅

3 foreach (i, t) ∈ V do

4 `(i,t) ←

 0 if i = 1

∞ else

5 end

6 while exists (i, t) ∈ V \ V̄ with `(i,t) + q(i,t) ≤ Q do

7 (i, t)← argminlex

(i,t)∈V \V̄ :`(i,t)+q(i,t)≤Q

{(
θi(t) +

n∑
j=i+1

min
t′∈[ej ,lj ]

τj(t
′), i, t

)}
8 V̄ ← V̄ ∪ {(i, t)}

9 if i = n then break

10 t∗ ← ε
⌈ θi(t)+∆i(`(i,t)+q(i,t))

ε

⌉
11 if t∗ ≤ li+1 then

12 DDD ::addRecursive
(
V, (qv)v∈V , (i+ 1, t∗))

13 end

14 foreach t′ ∈ {t′ | (i+ 1, t′) ∈ V \ V̄ , θi(t) ≤ t′ < t∗} do

15 if `(i,t) + q(i,t) < `(i+1,t′) then

16 `(i+1,t′) ← `(i,t) + q(i,t)

17 p(i+1,t′) ← (i, t)

18 end

19 end

20 foreach t′ ∈ {t′ | (i+ 1, t′) ∈ V \ V̄ , t′ ≥ t∗} do

21 `(i+1,t′) ← 0

22 p(i+1,t′) ← (i, t)

23 end

24 end

25 return solution
(
V̄ , (qv, `v, pv)v∈V̄

)
26 end

Algorithm 4: Solving the TDASPR in a partially expanded network
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Assume, that in the optimal solution (1, t1), . . . , (n, tn), the first replenishment is conducted

just before starting activity j. Because of Property 3, we have
∑j−1

i=1 q(i,t′i)
≤
∑j−1

i=1 ρi(ti) ≤

Q. Because ∆j−1 is non-decreasing, we have θj−1(t′j−1) + ∆j−1

(∑j−1
i=1 q(i,t′i)

)
≤ θj−1(tj−1) +

∆j−1

(∑j−1
i=1 ρi(ti)

)
. Therefore, there is a vertex (j, t) ∈ V̄ with t ≤ tj and `(j,t) = 0. By defi-

nition we have t ≤ t′j ≤ tj and we can conclude that `(j,t′j) = 0. Analogously we can show that∑k−1
i=j q(i,t′i)

≤
∑k−1

i=j ρi(ti) ≤ Q and `(k,t′k) = 0 if the next replenishment in the solution (1, t1),

. . . , (n, tn) is conducted just before starting activity k. We can apply this argument repeatedly to con-

clude that the capacity is not exceeded along the path (1, t′1), . . . , (n, t′n) and that `(n,t′n)+q(n,t′n) ≤ Q.

Thus, t̄n ≤ t′n ≤ tn.

Lemma 6 Assume that the path (1, t1), . . . , (n, tn) corresponds to a solution created by Algorithm 3

using Algorithm 4. Furthermore, assume that q(i,ti) = ρi(ti) for each 1 ≤ i ≤ n. Then, the path

corresponds to an optimal solution of the fully expanded TDASPR with discretized times.

Proof. For each 1 ≤ i ≤ n let `(i,ti) denote the corresponding label created by the algorithm. Let i

be any activity index with `(i,ti) = 0. For any activity index j > i such that no replenishment is

conducted between i and j, we have Q ≥ `(j,tj) + q(j,tj) =
∑j

k=i q(k,tk) =
∑j

k=i ρk(tk). Therefore,

the duration of any replenishment is sufficiently long and the capacity is never exceeded between

replenishments. Thus, (1, t1), . . . , (n, tn) is a feasible path in the fully expanded network. Because

of Lemma 5 we can conclude that the path corresponds to an optimal solution of the TDASP with

discretized times.

5 Preloading of vertices

Assume we have already solved the problem for a sequence of activities (1, . . . , n) and we want

to solve the problem for a sequence (1, . . . , n, n + 1, . . . ,m). It is likely that some of the vertices

that are generated when scheduling activities (1, . . . , n) are also generated when scheduling activities

(1, . . . , n, n+ 1, . . . ,m). We can reduce the computational effort associated to finding such vertices

again by preloading them before starting the solution process for sequence (1, . . . , n, n+ 1, . . . ,m).

On the other hand, preloading all of the vertices generated when determining a schedule for activities
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(1, . . . , n) may create an unnecessary computational overhead, because only a share of the vertices

can be expected to be required to find a solution for activities (1, . . . , n, n+ 1, . . . ,m).

To balance the tradeoff between salvaging previous computational effort and avoiding unneces-

sary overhead by adding too many vertices, we propose to preload all vertices of the solution path

for sequence (1, . . . , n) to our partially expanded network after initialization and before starting the

solution process. In order to ensure that q(i,t) = ρi(t) for all vertices preloaded, we also add the

immediate successors. As all vertices are added using the function DDD ::addRecursive, Proper-

ties 1 to 3 maintain satisfied. Consequently, the optimality conditions for all vertices on the previous

solution path are satisfied.

The benefit of adding these vertices after initialization of the partially expanded network is that

the total number of vertices generated by the dynamic discretization discovery may be drastically

reduced for those cases where the solution for sequence (1, . . . , n, n + 1, . . . ,m) overlaps with the

solution for sequence (1, . . . , n). In some cases, however, preloading may cause a small overhead

because vertices may be recursively added that are not needed for the solution process.

6 Evaluation

This paper is motivated by an industry project on last-mile deliveries with electric vehicles, where a

homogeneous fleet of electric delivery vehicles is used to deliver parcels within metropolitan areas,

i.e., regions consisting of densely populated city centres and less-populated surrounding territories.

Traffic conditions depend both on the particular area as well as the time of the day with morning and

afternoon peak hours. With increasing distance to the city centres, the impact of peak hours on travel

times decreases. Thus, the time-dependency of travel times is not homogeneous and delays caused by

congestion can be avoided by circumventing city centres during peak hours. Current electric vehicles

have minimal consumption per unit distance at moderate speeds while the consumption increases

towards very low or high velocities. Therefore, the energy consumption of the vehicles is related

to travel speeds, which in turn depend on the congestion level. All vehicles leave the depot fully

charged and have to return to the depot before running out of energy. They can recharge the battery

at the depot as well as at public charging infrastructure.
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Due to confidentiality reasons, we are not allowed to evaluate our approaches on instances ob-

tained from data of our project partners. Therefore, we generate artificial instances for the time-

dependent vehicle routing problem with replenishments having the characteristics described above.

Our instances are based on the well-known instances for the vehicle routing problem with time win-

dows by Solomon (1987). These instances have customer locations distributed in the Euclidean plane

and are subdivided into instance sets with clustered customer locations (C1 and C2), randomly dis-

tributed customer locations (R1 and R2), and mixed locations (RC1 and RC2).

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4
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0.8

1.0

Figure 2: Time-dependent congestion δ(t)

In order to include time-dependent travel times, we introduce a time-dependent congestion factor

δ(t) ∈ [0, 1] for each point in time as shown in Figure 2. The time values on the horizontal axis in

the figure are given relative to the duration of the time horizon which differs throughout the instances.

Low levels of δ(t) indicate free-flow traffic conditions during off-peak hours. High values of δ(t)

indicate high congestion levels during morning and afternoon peak-hours.

We assume a city centre in each quadrant of the Euclidean plane where congestion is maximal.

In order to consider that the level of congestion decreases with increasing distance to the city centres,

we calculate a location-dependent congestion factor γ(x, y) ∈ [0, 1] by the Gaussian function based

on the distance to the city centres. Figure 3 shows the location-dependent congestion factors, the

customer locations (shown as •), and the location of the depot (shown as×) for the different subsets of

instances proposed by Solomon (1987). Low values of γ(x, y) indicate low sensitivity to congestion

and are illustrated in light color. High values of γ(x, y) indicate high sensitivity to congestion and

are illustrated in dark color. We can see that all instances comprise customers located in areas prone

to congestion and others in areas where congestion is negligible. Even if two customers are located
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(d) RC1 & RC2 instances

Figure 3: Location-dependent congestion γ(x, y) and customer locations.
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in areas without significant congestion, the direct path from one to the other may traverse congested

areas during peak-hours.

For each integer valued point (x, y), we calculate the time required to travel a unit distance at a

time t by

τ(x,y)(t) =
τ free

(x,y)

1−min
{

0.8, γ(x, y)
}
· δ(t)

, (10)

where τ free
(x,y) is the congestion-agnostic time necessary to travel a unit distance at point (x, y). The

factor min
{

0.8, γ(x, y)
}

in (10) is used to generate homogeneous travel times in an area around the

city centres. The maximum travel time close to a city centre is five times the free flow travel time.
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(c) Five stations per city

Figure 4: Location of the charging stations

For our experiments, we derived five sets of instances from the original instances. In the first set

of instances, vehicles cannot recharge the battery during the route. In the second set of instances,

vehicles can only recharge the battery at the depot. In the other set of instances, vehicles can recharge

the battery at the depot and at public charging infrastructure close to one of the four city centres. The

number of charging stations available ranges from one per city to five per city and their locations are

illustrated in Figure 4.

In order to determine time-dependent travel time and consumption functions for any pair of lo-

cations, we determine a time-dependent shortest path for different start times distributed over the

planning horizon, assuming that the vehicle can only move one unit left, right, up, or down, and
√

2

units in diagonal direction. A time-dependent travel time function is then determined by fitting a
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piecewise linear function to the duration of the time-dependent shortest paths. For each of the time-

dependent shortest paths, we determine the energy consumed along the path by accumulating the

speed-dependent energy consumption (Galvin 2017) for each point traversed along the path. Then,

the time-dependent consumption function is obtained by fitting a piecewise linear function to the

energy consumption of the time-dependent shortest paths. The details of the instance generator in-

cluding the source code can be found online at https://github.com/SteffenPottel/td_

vrptw_instancegenerator.

The instances are heuristically solved using an adaptation of the savings algorithm (Clarke and

Wright 1964), where routes are evaluated using the approaches presented in this paper. Since vehi-

cles and the corresponding driver are the main cost-components in last-mile delivery operations, we

optimize over the total number of vehicles first and, as a second criterion, over the total completion

time. The latter includes, in particular, the time to return to the depot. In order to allow recharging of

the battery at the depot or at public charging stations we allow vehicles to take a detour via a charging

station whenever the increase in the travel distance does not exceed
√

2 times the direct distance be-

tween delivery locations. If multiple charging stations satisfy this criterion, then the charging station

with the smallest detour is chosen. The delivery companies partnering in the project expressed that

they want to avoid short and possibly avoidable stops at charging stations. By setting the duration of

the replenishment to a constant value we penalize recharging when the energy level of the battery is

still high.

We implemented our algorithms in C++ and ran the experiments on a single core of an Intel Core

i7-7700HQ CPU with 2.80GHz. For comparison purposes we ran experiments using CPLEX for

solving for the mixed integer program provided in Appendix A.

Tables 1 and 2 provide an overview over the results of our experiments. Detailed results of

our experiments can be found in Appendix C. The first column in the tables indicates the solver

used for route evaluations. The dynamic discretization discovery approach is denoted by DDD, the

dynamic discretization discovery approach with preloading of vertices is denoted by DDD-PL, and

the approach using the mixed integer programming solver is denoted by MIP. The second column lists

the number of charging stations available. The third and fourth column show the average computation

time (in seconds) until termination of the savings algorithm, and the computation time (in seconds)
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per route evaluation. The fifth and six column report the average number of vehicles and the average

total completion time. The next two columns indicate the number of routes in which the vehicle

recharges the battery at a service station (or the depot) and the total number of replenishments. The

last column indicates the number of instances for which the savings algorithm terminated within the

run time limit of 7200 seconds.

Solver Charging Avg. CPU CPU per Evaluation Avg. Veh. Avg. Compl. Replenishments Routes w. Repl. Terminated

DDD none 82.4 0.000182 18.0 5949.4 0 0 29

DDD Depot 93.9 0.000161 18.0 5948.2 6 6 29

DDD Depot + 1 per city 134.8 0.000203 18.1 5958.3 9 9 29

DDD Depot + 3 per city 135.3 0.000186 18.0 5954.8 10 10 29

DDD Depot + 5 per city 146.9 0.000198 18.0 5960.5 10 10 29

DDD-PL none 72.6 0.000162 18.0 5949.4 0 0 29

DDD-PL Depot 75.8 0.000128 18.0 5948.2 6 6 29

DDD-PL Depot + 1 per city 84.0 0.000127 18.1 5958.3 9 9 29

DDD-PL Depot + 3 per city 81.1 0.000113 18.0 5954.8 10 10 29

DDD-PL Depot + 5 per city 88.4 0.000121 18.0 5960.5 10 10 29

MIP none 2508.0 0.005232 18.1 5950.6 0 0 29

MIP Depot 3299.9 0.005505 18.4 5752.5 4 4 28

MIP Depot + 1 per city 3621.5 0.005620 18.4 5753.5 7 7 28

MIP Depot + 3 per city 3345.9 0.005407 19.3 5622.5 5 5 23

MIP Depot + 5 per city 3282.6 0.005342 19.5 5753.8 6 6 22

Table 1: Results averaged over 29 instances of type C1, R1, and RC1.

As we can see in Tables 1 and 2, the dynamic discretization discovery approaches are magnitudes

faster than the savings algorithm using the MIP formulation for route evaluations which fails to ter-

minate for many of the instances within the run time limit of 7200 seconds. We have to note, that

although the route evaluations are embedded within the same savings algorithm, the MIP approach

can produce results that differ from those of the DDD approaches, because the MIP formulation is

not restricted to the discretization. Small deviations in calculating the savings can result in different

rankings of the savings and ultimately in different routes being generated.

Instances belonging to sets C1, R1, and RC1, have a smaller freight capacity and a shorter plan-

ning horizon compared to instances belonging to sets C2, R2, and RC2. Therefore, more vehicles are

used for instances of sets C1, R1, and RC1 than for instances of sets C2, R2, and RC2. Thus routes
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Solver Charging Avg. CPU CPU per Evaluation Avg. Veh. Avg. Compl. Replenishments Routes w. Repl. Terminated

DDD none 718.2 0.001021 9.6 8386.9 0 0 27

DDD Depot 934.5 0.000802 6.7 6936.7 188 124 27

DDD Depot + 1 per city 1254.9 0.000853 6.8 6884.8 190 122 27

DDD Depot + 3 per city 2021.6 0.000739 6.2 6430.8 189 113 26

DDD Depot + 5 per city 2306.4 0.000761 6.3 6858.1 172 105 23

DDD-PL none 721.2 0.001020 9.6 8386.9 0 0 27

DDD-PL Depot 640.4 0.000552 6.7 6936.7 188 124 27

DDD-PL Depot + 1 per city 739.2 0.000513 6.8 6884.8 190 122 27

DDD-PL Depot + 3 per city 1030.3 0.000351 6.2 6654.4 197 117 27

DDD-PL Depot + 5 per city 1045.7 0.000305 6.2 6854.9 194 116 26

MIP none 3729.6 0.005853 10.0 9056.6 0 0 21

MIP Depot 4877.2 0.005443 7.1 8100.1 55 40 8

MIP Depot + 1 per city 5542.7 0.005701 6.2 7588.0 29 25 5

MIP Depot + 3 per city 6725.1 0.005562 4.0 10778.2 1 1 1

MIP Depot + 5 per city 6230.4 0.005494 4.0 10746.7 3 3 1

Table 2: Results averaged over 27 instances of type C2, R2, and RC2.

for instances in sets C1, R1, and RC1 visit fewer customers and the approach requires significantly

less computational effort than for instances of sets C2, R2, and RC2.

With fewer stops per route, the likelihood of running out of electric energy is much smaller. In

fact, the solutions for instances of sets R1 and RC1 have no recharging stops at all, because these

instances have a very short planning horizon, leaving little time to sensibly recharge batteries. For

instances in sets C2, R2, and RC2, the freight capacity and planning horizons are larger. Therefore,

less vehicles are used and many more routes make use of the possibility to recharge the batteries.

With an increasing number of charging stations, the number of alternative routes via charging

stations increases and so does the computational effort required for evaluating these alternatives. We

can see that preloading of vertices helps stabilizing the runtime of the algorithm and leads to signifi-

cantly shorter computation times for instances with many charging possibilities. With preloading of

vertices, the dynamic discretization discovery approach is able to (heuristically) solve almost all of

the instances except for instance r211 with five charging stations per city within the run time limit.

Without run time limit, instance r211 with five charging stations per city can be solved in 8027.5 sec-

onds.
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An interesting observation from an application point of view is that the possibility to recharge the

battery during a route can significantly reduce the number of vehicles required as well as the total

completion time. Table 2 indicates that for instances in sets C2, R2, and RC2, the number of routes

required can be reduced by approximately one third if vehicles can recharge batteries while they

are on route. This demonstrates the importance of considering replenishments within scheduling.

Furthermore, it can be seen that the number of vehicles required is not significantly reduced with an

increasing number of charging stations. In fact, the possibility to recharge the battery at the depot

already accounts for the main benefit in terms of the number of vehicles required. Additional public

charging infrastructure may furthermore reduce the detour required to reach a charging station and

thus can contribute to smaller total completion times and less routes requiring replenishments.

7 Conclusions

In this paper we introduce a time-dependent activity scheduling problem in which activities con-

sume a limited resource during execution and activity durations and resource consumptions are time-

dependent. Moreover, we study the case in which the resource can be replenished between conducting

subsequent activities. We propose a dynamic discretization discovery algorithm which is based on

partially time-expanded networks which are dynamically filled with additional vertices. The dynamic

discretization discovery algorithm can be used for general duration and consumption functions and

only requires the first-in-first-out property for activity durations. For the case that the dynamic dis-

cretization discovery is embedded in an iterative solution procedure that frequently evaluates activity

sequences that start with the same activities, we propose to preload the partially expanded network

with vertices generated in previous iterations. This preloading of vertices can significantly reduce the

computational effort required.

We evaluate our approaches on a case of determining routes for a fleet of electric delivery vehicles

for last-mile deliveries. Our experimental results indicate that the dynamic discretization discovery

algorithm is magnitudes faster than the commercial solver CPLEX using a mixed integer program-

ming formulation of the problem. Furthermore, our experiments show that for our instances, which
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are motivated by the real-life case of last-mile delivery operations, the possibility to recharge batteries

en-route can significantly reduce the number of vehicles required and the total completion time.
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Appendix

A Mixed-integer program for piecewise linear duration and consump-

tion functions

In this appendix we provide a formulation of the TDASPR under the assumption that functions τi(t),

θi(t), and ρi(t) are non-negative, piecewise linear, and lower semi-continuous for each 1 ≤ i ≤ n

and that the replenishment duration ∆i is a constant for each 1 ≤ i ≤ n. Like before we assume

that the FIFO property holds, i.e., that θi(t) is non-decreasing. Note that we do not require τi(t),

θi(t), and ρi(t) to be continuous. This allows us to consider applications such as durations of trips

conducted with public transport services where discontinuities occur when the scheduled departure

time is missed and waiting time until the next scheduled departure needs to be considered.

Let Sτi and Sρi denote the set of piecewise linear segments of τi and ρi. For each linear segment

s ∈ Sτi ∪ S
ρ
i , let es and ls denote the start and end of the segment and let as denote the slope and bs

the intercept of the respective linear function. Thus, if the start time ti of activity i is within segment

s ∈ Sτi , then τi(ti) = asti + bs.

With this, the problem can be modelled with binary variables xi,s indicating whether segment

s ∈ Sτi of the duration function or segment s ∈ Sρi of the consumption function is used for activity i.

A binary variable yi indicates whether the resource is replenished after conducting the activity i, linear

variables di and qi indicate the duration and resource consumption of activity i, and ti indicates the

start time of activity i. Linear variables ti,s indicate time values for activity i associated to segment

s ∈ Sτi of the duration function or for segment s ∈ Sρi of the consumption function.

The TDASP with piecewise linear duration and consumption functions can be formulated as a

mixed-integer program by

minimise

tn + dn (11)

subject to ∑
s∈Sτi

xi,s = 1 for all 1 ≤ i ≤ n (12a)

esxi,s ≤ ti,s ≤ lsxi,s for all 1 ≤ i ≤ n, s ∈ Sτi (12b)
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ti =
∑
s∈Sτi

ti,s for all 1 ≤ i ≤ n (12c)

di =
∑
s∈Sτi

(asti,s + bsxi,s) for all 1 ≤ i ≤ n (12d)

ti + di + ∆iyi ≤ ti+1 for all 1 ≤ i < n (12e)

∑
s∈Sρi

xi,s = 1 for all 1 ≤ i ≤ n (13a)

esxi,s ≤ ti,s ≤ lsxi,s for all 1 ≤ i ≤ n, s ∈ Sρi (13b)

ti =
∑
s∈Sρi

ti,s for all 1 ≤ i ≤ n (13c)

qi =
∑
s∈Sρi

(asti,s + bsxi,s) for all 1 ≤ i ≤ n (13d)

j∑
k=i

qk ≤ Q+M

j−1∑
k=i

yk for all 1 ≤ i ≤ j ≤ n (13e)

xi,s ∈ {0, 1} for all s ∈ Sτi ∪ S
ρ
i , 1 ≤ i ≤ n (14)

yi ∈ {0, 1} for all 1 ≤ i ≤ n (15)

The objective (11) is to minimise the completion time. Constraint (12a) ensures that for each

activity exactly one of the time segments is selected. Constraints (12b) and (12c) ensure that ti,s is

zero if xi,s = 0 and ti,s ∈ [es, ls] if xi,s = 1, and that the start time of activity i is set accordingly.

Note that the boundary values of [es, ls] might not belong to the segment s because we do not re-

quire continuity of the functions. Due to the lower semi-continuity, however, this is not a problem

in an optimal solution. The duration di of activity i can be obtained by constraint (12d). Because of

constraint (12e), the start time of any activity must not be before the completion time of the previous

activity plus the time required for a potential replenishment. Constraints (13a) to (13d) are analogous

to constraints (12a) to (12d) for the resource consumption. Constraint (13e) requires that the cumu-

lative resource consumption of any sequence of activities does not exceed Q unless the resource is

replenished. Lastly, the domain of the binary variables is given by (14) and (15).
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B Restrictions on replenishments

A variation of the TDASPR, in which replenishments are forbidden or required after certain activities,

can be obtained by constraining the binary variables indicating the choice of whether to conduct a

replenishment or not. This can be achieved by adding a constraint yi = 0 or yi = 1 for each activity i

which prohibits or requires a replenishment after its completion in the problems given by (5) to (9) or

(11) to (15).

If a replenishment is not allowed after an activity, we can avoid replenishments by adapting Algo-

rithm 4 in such a way that the earliest time after the replenishment t∗ is set to a value that exceeds li+1

in line 10.

Let us now consider the case that a replenishment is required after activity i. In this case Property 2

loses its relevance for all vertices of activity i, because the property does not consider the duration of

the required replenishment. The main purpose of Property 2 was to ensure that the vertex representing

the earliest possible time at which the next activity can be conducted is included in the partially

expanded network. In Algorithm 4, this is achieved by line 12 which includes a vertex for the next

activity and the earliest time after the required replenishment. We can adapt Algorithm 4 in such a way

that lines 14 to 19, which update the labels assuming that no replenishment is conducted, are skipped

if a replenishment is required. Furthermore, the condition in line 22 of function DDD ::addRecursive

can be changed in such a way that the recursive insertion of vertices is terminated if a replenishment is

required after the current activity. With these changes our approach can be used to solve the TDASPR

with required replenishments even if Property 2 does not hold for activities requiring a replenishment.

C Detailed results

Tables 3 to 7 show detailed results of our computational experiments. The first column gives the

name of the instance. The results for the approach based on dynamic discretization discovery with

replenishments (DDD) are given in columns 2 to 5. The results for the dynamic discretization discover

approach with replenishments and preloading (DDD-PL) are given in columns 6 to 9. The results for

the approach using CPLEX for solving for the mixed integer program (MIP) are given in columns

10 to 13. For each approach, the total computation time is given in the column titled CPU, the
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number of vehicles required is given in the column titled Veh., the total completion time is given in

the column titled Compl., and the number of replenishments at service stations is given in the column

titled Repl.. Dashes in the columns for MIP indicate that no solution was found within the time limit

of 7200 seconds. For the dynamic discretization discovery approaches DDD and DDD-PL, the results

violating the time limit are written in italic.
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DDD DDD-PL MIP
Instance CPU Veh. Compl. Repl. CPU Veh. Compl. Repl. CPU Veh. Compl. Repl.
c101 101.4 13 11589.1 0 97.8 13 11589.1 0 1083.0 14 11507.9 0
c102 645.3 16 12064.9 0 628.2 16 12064.9 0 2189.1 15 11974.3 0
c103 271.2 11 11809.4 0 256.5 11 11809.4 0 3308.8 12 11978.7 0
c104 60.2 11 11788.7 0 49.2 11 11788.7 0 4389.2 11 11644.2 0
c105 96.4 15 10946.8 0 89.1 15 10946.8 0 1505.1 14 10930.6 0
c106 116.9 16 12357.3 0 110.3 16 12357.3 0 1601.9 16 12432.2 0
c107 126.7 13 10653.1 0 115.6 13 10653.1 0 2054.6 12 10487.1 0
c108 139.0 13 10884.0 0 122.6 13 10884.0 0 2351.3 15 11077.0 0
c109 160.4 13 10612.8 0 143.1 13 10612.8 0 3379.3 13 10606.5 0
c201 29.4 5 11321.1 0 7.3 5 11321.1 0 2054.1 5 11317.0 0
c202 417.9 8 17256.2 0 382.6 8 17256.2 0 2863.3 9 17647.4 0
c203 143.3 9 17404.2 0 120.2 9 17404.2 0 4360.3 11 18616.1 0
c204 4599.1 8 16319.8 0 4804.2 8 16319.8 0 — — — —
c205 47.6 5 11123.6 0 16.2 5 11123.6 0 2662.4 5 11119.2 0
c206 171.2 8 15428.4 0 126.0 8 15428.4 0 2902.9 8 15554.2 0
c207 248.5 10 19200.6 0 202.9 10 19200.6 0 2825.2 10 18998.1 0
c208 97.1 5 10839.4 0 42.9 5 10839.4 0 5048.7 5 10834.5 0
r101 21.2 28 4596.6 0 18.5 28 4596.6 0 473.6 28 4619.5 0
r102 37.3 23 3864.5 0 31.3 23 3864.5 0 1767.6 23 3835.1 0
r103 33.7 19 3470.5 0 24.4 19 3470.5 0 2853.6 19 3491.1 0
r104 25.4 15 2951.3 0 12.0 15 2951.3 0 4224.7 14 2839.2 0
r105 44.9 22 3717.0 0 41.4 22 3717.0 0 852.4 23 3913.1 0
r106 38.0 21 3373.2 0 29.4 21 3373.2 0 2228.1 21 3332.1 0
r107 36.0 19 3093.4 0 25.7 19 3093.4 0 3216.4 20 3241.5 0
r108 24.6 16 2937.1 0 9.9 16 2937.1 0 4398.2 16 2917.9 0
r109 56.4 20 3273.5 0 48.4 20 3273.5 0 1811.9 19 3185.3 0
r110 37.7 18 2964.8 0 26.9 18 2964.8 0 2859.1 18 3036.1 0
r111 33.4 18 3126.4 0 21.3 18 3126.4 0 3153.0 18 3079.2 0
r112 28.2 15 2638.0 0 9.2 15 2638.0 0 4878.3 15 2632.5 0
r201 254.3 12 6799.5 0 246.2 12 6799.5 0 2502.3 12 6839.2 0
r202 604.6 11 6422.3 0 592.1 11 6422.3 0 3366.1 11 6204.6 0
r203 415.7 9 4988.8 0 420.5 9 4988.8 0 4085.9 9 4880.5 0
r204 783.1 8 4210.2 0 797.1 8 4210.2 0 — — — —
r205 493.0 10 5732.0 0 491.3 10 5732.0 0 3678.4 11 6038.5 0
r206 1064.1 10 5211.6 0 1155.0 10 5211.6 0 4797.2 10 5341.0 0
r207 814.1 9 4700.4 0 844.3 9 4700.4 0 5726.8 9 4453.6 0
r208 810.9 8 3528.3 0 820.8 8 3528.3 0 — — — —
r209 785.4 11 5820.9 0 784.0 11 5820.9 0 4621.4 11 5785.2 0
r210 536.3 10 5400.0 0 543.4 10 5400.0 0 4554.3 11 5888.0 0
r211 1463.2 9 4499.5 0 1501.0 9 4499.5 0 — — — —
rc101 26.5 25 4553.7 0 24.5 25 4553.7 0 668.5 24 4400.1 0
rc102 34.5 23 4007.6 0 28.9 23 4007.6 0 1702.7 23 3933.6 0
rc103 31.0 21 3739.8 0 22.4 21 3739.8 0 2748.0 21 3774.4 0
rc104 30.2 15 3123.7 0 16.0 15 3123.7 0 4073.1 16 3198.8 0
rc105 36.9 22 4030.0 0 32.8 22 4030.0 0 1348.8 24 4142.6 0
rc106 47.9 22 3735.4 0 42.8 22 3735.4 0 1360.1 21 3661.8 0
rc107 24.8 22 3515.4 0 16.2 22 3515.4 0 2488.5 22 3504.7 0
rc108 23.7 17 3115.6 0 10.1 17 3115.6 0 3763.3 18 3191.4 0
rc201 479.4 14 7851.4 0 470.6 14 7851.4 0 2118.6 14 7992.2 0
rc202 346.8 13 7266.6 0 345.7 13 7266.6 0 3475.4 12 7203.4 0
rc203 417.6 11 5670.8 0 400.1 11 5670.8 0 4632.7 11 5723.4 0
rc204 941.1 9 4235.3 0 906.5 9 4235.3 0 — — — —
rc205 495.4 13 7177.7 0 489.4 13 7177.7 0 3102.3 13 7081.8 0
rc206 772.5 12 6883.9 0 768.8 12 6883.9 0 4046.7 12 6880.8 0
rc207 761.0 12 6388.6 0 755.6 12 6388.6 0 4897.0 12 5790.4 0
rc208 1399.6 11 4764.5 0 1438.3 11 4764.5 0 — — — —

Table 3: Results for instances without service stations.
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DDD DDD-PL MIP
Instance CPU Veh. Compl. Repl. CPU Veh. Compl. Repl. CPU Veh. Compl. Repl.
c101 112.7 13 11589.1 0 105.7 13 11589.1 0 1570.7 14 11507.9 0
c102 662.5 17 12063.2 1 650.8 17 12063.2 1 3620.6 15 11974.3 0
c103 296.2 11 12038.8 2 274.7 11 12038.8 2 5572.4 12 12213.4 2
c104 80.9 11 11590.4 1 56.8 11 11590.4 1 — — — —
c105 105.9 15 10946.8 0 92.0 15 10946.8 0 2194.6 14 10930.6 0
c106 124.4 16 12292.3 2 114.3 16 12292.3 2 2367.1 16 12343.1 2
c107 138.6 13 10653.1 0 120.5 13 10653.1 0 2999.0 12 10487.1 0
c108 151.1 13 10884.0 0 127.1 13 10884.0 0 3583.9 15 11077.0 0
c109 179.7 13 10612.8 0 147.9 13 10612.8 0 5342.9 13 10606.5 0
c201 78.1 4 10800.4 2 16.1 4 10800.4 2 3493.4 4 10864.3 2
c202 166.5 8 13213.7 11 33.7 8 13213.7 11 5350.8 9 14985.1 9
c203 947.5 6 14026.1 8 700.4 6 14026.1 8 — — — —
c204 829.3 5 13141.1 8 671.6 5 13141.1 8 — — — —
c205 119.8 4 10609.8 2 36.4 4 10609.8 2 4953.0 4 10576.7 2
c206 481.9 5 12078.3 8 125.9 5 12078.3 8 — — — —
c207 742.5 5 13219.8 11 465.2 5 13219.8 11 — — — —
c208 278.8 4 10388.0 2 140.0 4 10388.0 2 — — — —
r101 21.4 28 4596.6 0 18.9 28 4596.6 0 486.3 28 4619.5 0
r102 41.0 23 3864.5 0 32.5 23 3864.5 0 2332.4 23 3835.1 0
r103 44.3 19 3470.5 0 26.4 19 3470.5 0 4156.0 19 3491.1 0
r104 42.7 15 2951.3 0 14.5 15 2951.3 0 6477.7 14 2839.2 0
r105 46.0 22 3717.0 0 41.5 22 3717.0 0 884.5 23 3913.1 0
r106 42.9 21 3373.2 0 30.2 21 3373.2 0 2896.1 21 3332.1 0
r107 46.4 19 3093.4 0 27.5 19 3093.4 0 4605.1 20 3241.5 0
r108 42.1 16 2937.1 0 12.4 16 2937.1 0 6614.1 16 2917.9 0
r109 57.3 20 3273.5 0 48.9 20 3273.5 0 1912.1 19 3185.3 0
r110 40.5 18 2964.8 0 27.5 18 2964.8 0 3259.8 18 3036.1 0
r111 38.8 18 3126.4 0 22.7 18 3126.4 0 3862.2 18 3079.2 0
r112 33.3 15 2638.0 0 10.5 15 2638.0 0 5568.3 15 2632.5 0
r201 244.7 7 5173.2 10 226.5 7 5173.2 10 3869.1 7 5197.1 8
r202 1636.8 9 5846.2 8 1294.1 9 5846.2 8 6243.5 8 5509.5 7
r203 587.8 8 4510.7 5 408.5 8 4510.7 5 — — — —
r204 307.2 5 3675.6 6 173.5 5 3675.6 6 — — — —
r205 1229.0 8 4897.6 7 795.3 8 4897.6 7 — — — —
r206 1649.9 7 4529.1 7 1147.0 7 4529.1 7 — — — —
r207 758.8 7 3606.0 4 467.2 7 3606.0 4 — — — —
r208 919.6 5 3417.8 6 474.3 5 3417.8 6 — — — —
r209 1403.9 7 4583.4 8 935.3 7 4583.4 8 — — — —
r210 2123.2 7 4276.1 6 1503.8 7 4276.1 6 — — — —
r211 2597.0 6 3616.2 5 1894.3 6 3616.2 5 — — — —
rc101 35.5 25 4553.7 0 24.0 25 4553.7 0 694.4 24 4400.1 0
rc102 48.3 23 4007.6 0 28.9 23 4007.6 0 2059.9 23 3933.6 0
rc103 50.0 21 3739.8 0 22.8 21 3739.8 0 3635.7 21 3774.4 0
rc104 56.5 15 3123.7 0 17.5 15 3123.7 0 5767.0 16 3198.8 0
rc105 49.4 22 4030.0 0 32.5 22 4030.0 0 1452.3 24 4142.6 0
rc106 64.1 22 3735.4 0 42.1 22 3735.4 0 1437.7 21 3661.8 0
rc107 35.7 22 3515.4 0 16.3 22 3515.4 0 2801.4 22 3504.7 0
rc108 35.6 17 3115.6 0 10.4 17 3115.6 0 4243.9 18 3191.4 0
rc201 1068.9 11 6859.0 7 760.0 11 6859.0 7 3792.7 8 6058.0 8
rc202 614.7 8 5630.5 9 435.3 8 5630.5 9 5983.0 8 5627.6 9
rc203 484.1 9 4591.2 7 312.3 9 4591.2 7 — — — —
rc204 1307.1 5 3924.7 6 940.8 5 3924.7 6 — — — —
rc205 919.5 10 6271.4 10 667.1 10 6271.4 10 5332.3 9 5982.3 10
rc206 1288.5 7 5019.8 9 893.5 7 5019.8 9 — — — —
rc207 831.2 9 5249.0 9 575.2 9 5249.0 9 — — — —
rc208 1614.4 6 4136.9 7 1196.6 6 4136.9 7 — — — —

Table 4: Results for instances with recharging at the depot.
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DDD DDD-PL MIP
Instance CPU Veh. Compl. Repl. CPU Veh. Compl. Repl. CPU Veh. Compl. Repl.
c101 216.7 13 11589.1 0 148.3 13 11589.1 0 1839.8 14 11507.9 0
c102 898.6 17 12063.2 1 663.6 17 12063.2 1 4255.9 15 12042.2 2
c103 629.0 13 12129.1 4 416.1 13 12129.1 4 6915.7 12 12219.9 2
c104 122.2 11 11719.3 2 60.2 11 11719.3 2 — — — —
c105 144.1 15 10946.8 0 94.9 15 10946.8 0 2538.3 14 10930.6 0
c106 185.9 16 12365.6 2 126.3 16 12365.6 2 3064.5 16 12297.4 3
c107 189.1 13 10653.1 0 123.8 13 10653.1 0 3476.7 12 10487.1 0
c108 214.9 13 10884.0 0 134.2 13 10884.0 0 4384.8 15 11077.0 0
c109 249.4 13 10612.8 0 155.8 13 10612.8 0 6372.4 13 10606.5 0
c201 149.3 4 10754.0 2 19.7 4 10754.0 2 4363.4 4 10880.6 2
c202 799.7 8 13114.4 10 211.8 8 13114.4 10 — — — —
c203 2078.1 6 14079.3 7 1006.9 6 14079.3 7 — — — —
c204 3071.9 5 13153.1 8 1559.3 5 13153.1 8 — — — —
c205 232.9 4 10622.9 2 38.4 4 10622.9 2 6382.4 4 10656.9 2
c206 932.9 5 12398.6 9 335.1 5 12398.6 9 — — — —
c207 1361.8 6 13238.2 10 331.9 6 13238.2 10 — — — —
c208 496.5 4 10388.0 2 161.3 4 10388.0 2 — — — —
r101 28.2 28 4596.6 0 18.9 28 4596.6 0 488.0 28 4619.5 0
r102 54.7 23 3864.5 0 32.6 23 3864.5 0 2384.4 23 3835.1 0
r103 59.2 19 3470.5 0 26.4 19 3470.5 0 4282.0 19 3491.1 0
r104 57.7 15 2951.3 0 14.9 15 2951.3 0 6679.9 14 2839.2 0
r105 60.1 22 3717.0 0 42.1 22 3717.0 0 880.3 23 3913.1 0
r106 56.9 21 3373.2 0 30.8 21 3373.2 0 2952.0 21 3332.1 0
r107 62.6 19 3093.4 0 27.8 19 3093.4 0 4969.0 20 3241.5 0
r108 56.8 16 2937.1 0 12.9 16 2937.1 0 6827.5 16 2917.9 0
r109 75.5 20 3273.5 0 48.7 20 3273.5 0 1916.4 19 3185.3 0
r110 54.1 18 2964.8 0 27.5 18 2964.8 0 3299.7 18 3036.1 0
r111 51.6 18 3126.4 0 22.8 18 3126.4 0 3975.8 18 3079.2 0
r112 44.8 15 2638.0 0 10.5 15 2638.0 0 5667.4 15 2632.5 0
r201 362.1 8 5228.0 8 253.5 8 5228.0 8 4074.7 7 5237.2 9
r202 1705.6 8 5562.3 7 1269.4 8 5562.3 7 6423.5 8 5408.0 7
r203 561.2 8 4493.1 5 390.5 8 4493.1 5 — — — —
r204 849.3 5 3735.3 6 510.2 5 3735.3 6 — — — —
r205 1721.7 7 4660.5 7 1159.9 7 4660.5 7 — — — —
r206 2038.9 7 4570.1 7 1455.0 7 4570.1 7 — — — —
r207 669.9 7 3586.8 4 373.7 7 3586.8 4 — — — —
r208 996.6 5 3303.6 5 539.1 5 3303.6 5 — — — —
r209 1829.5 8 4613.9 7 1216.3 8 4613.9 7 — — — —
r210 913.2 8 4598.5 7 621.5 8 4598.5 7 — — — —
r211 2836.2 6 3612.4 5 2059.4 6 3612.4 5 — — — —
rc101 35.7 25 4553.7 0 24.1 25 4553.7 0 707.4 24 4400.1 0
rc102 50.4 23 4007.6 0 29.2 23 4007.6 0 2307.7 23 3933.6 0
rc103 54.1 21 3739.8 0 23.5 21 3739.8 0 4111.0 21 3774.4 0
rc104 64.3 15 3123.7 0 18.4 15 3123.7 0 6503.2 16 3198.8 0
rc105 50.5 22 4030.0 0 32.8 22 4030.0 0 1548.1 24 4142.6 0
rc106 65.3 22 3735.4 0 42.1 22 3735.4 0 1513.0 21 3661.8 0
rc107 37.1 22 3515.4 0 16.5 22 3515.4 0 2953.0 22 3504.7 0
rc108 39.1 17 3115.6 0 11.0 17 3115.6 0 4588.9 18 3191.4 0
rc201 500.4 9 6035.4 10 313.2 9 6035.4 10 6469.3 8 5757.2 9
rc202 506.7 9 5530.7 11 342.1 9 5530.7 11 — — — —
rc203 484.8 8 4406.0 8 317.1 8 4406.0 8 — — — —
rc204 501.9 6 4009.1 6 287.5 6 4009.1 6 — — — —
rc205 1207.3 9 5812.7 12 818.9 9 5812.7 12 — — — —
rc206 2284.8 8 5272.5 9 1426.5 8 5272.5 9 — — — —
rc207 1412.4 8 5032.1 10 902.4 8 5032.1 10 — — — —
rc208 3377.5 7 4078.1 6 2038.5 7 4078.1 6 — — — —

Table 5: Results for instances with recharging at the depot and one station per city.
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DDD DDD-PL MIP
Instance CPU Veh. Compl. Repl. CPU Veh. Compl. Repl. CPU Veh. Compl. Repl.
c101 169.5 13 11589.1 0 115.3 13 11589.1 0 2059.8 14 11507.9 0
c102 930.9 17 12063.2 1 681.4 17 12063.2 1 4734.5 15 12079.1 1
c103 432.2 11 11992.5 3 292.6 11 11992.5 3 — — — —
c104 152.9 11 11732.0 3 63.6 11 11732.0 3 — — — —
c105 156.8 15 10946.8 0 99.1 15 10946.8 0 2851.8 14 10930.6 0
c106 202.5 16 12389.2 3 130.6 16 12389.2 3 3611.1 16 12262.3 4
c107 202.1 13 10653.1 0 128.3 13 10653.1 0 3928.6 12 10487.1 0
c108 246.3 13 10884.0 0 149.1 13 10884.0 0 5407.3 15 11077.0 0
c109 272.4 13 10612.8 0 161.3 13 10612.8 0 — — — —
c201 414.4 4 10758.8 2 31.1 4 10758.8 2 6725.1 4 10778.2 1
c202 1162.7 7 12369.5 9 206.6 7 12369.5 9 — — — —
c203 2520.5 6 14003.2 8 579.7 6 14003.2 8 — — — —
c204 4710.0 5 13259.3 7 1262.7 5 13259.3 7 — — — —
c205 677.5 4 10071.8 2 63.4 4 10071.8 2 — — — —
c206 1413.5 5 12160.6 8 171.0 5 12160.6 8 — — — —
c207 12235.4 5 12469.8 8 6787.1 5 12469.8 8 — — — —
c208 2069.5 4 10040.9 2 612.1 4 10040.9 2 — — — —
r101 28.5 28 4596.6 0 18.9 28 4596.6 0 504.2 28 4619.5 0
r102 58.1 23 3864.5 0 33.3 23 3864.5 0 2754.6 23 3835.1 0
r103 67.7 19 3470.5 0 27.8 19 3470.5 0 5128.7 19 3491.1 0
r104 68.4 15 2951.3 0 16.4 15 2951.3 0 — — — —
r105 60.8 22 3717.0 0 41.8 22 3717.0 0 931.2 23 3913.1 0
r106 61.2 21 3373.2 0 31.5 21 3373.2 0 3440.5 21 3332.1 0
r107 71.3 19 3093.4 0 28.8 19 3093.4 0 5651.0 20 3241.5 0
r108 68.0 16 2937.1 0 14.2 16 2937.1 0 — — — —
r109 79.1 20 3273.5 0 50.2 20 3273.5 0 2070.6 19 3185.3 0
r110 58.9 18 2964.8 0 28.5 18 2964.8 0 3690.6 18 3036.1 0
r111 59.8 18 3126.4 0 23.4 18 3126.4 0 4616.6 18 3079.2 0
r112 56.5 15 2638.0 0 11.8 15 2638.0 0 6645.8 15 2632.5 0
r201 716.5 7 5192.1 9 352.9 7 5192.1 9 — — — —
r202 1038.9 8 5185.6 10 688.2 8 5185.6 10 — — — —
r203 903.3 8 4053.7 7 535.2 8 4053.7 7 — — — —
r204 324.3 4 3698.4 5 143.1 4 3698.4 5 — — — —
r205 4064.5 7 4353.7 8 1197.2 7 4353.7 8 — — — —
r206 2180.7 6 4183.6 8 1021.8 6 4183.6 8 — — — —
r207 6237.2 6 3756.8 5 983.5 6 3756.8 5 — — — —
r208 1360.3 5 3478.2 6 570.5 5 3478.2 6 — — — —
r209 2220.9 7 4082.1 7 1357.0 7 4082.1 7 — — — —
r210 1814.5 7 4512.7 7 1036.7 7 4512.7 7 — — — —
r211 6747.9 5 3571.9 6 3528.3 5 3571.9 6 — — — —
rc101 36.0 25 4553.7 0 25.0 25 4553.7 0 727.9 24 4400.1 0
rc102 52.1 23 4007.6 0 29.5 23 4007.6 0 2439.6 23 3933.6 0
rc103 58.6 21 3739.8 0 24.7 21 3739.8 0 4504.1 21 3774.4 0
rc104 71.9 15 3123.7 0 19.6 15 3123.7 0 — — — —
rc105 51.6 22 4030.0 0 33.7 22 4030.0 0 1613.9 24 4142.6 0
rc106 65.4 22 3735.4 0 43.3 22 3735.4 0 1538.2 21 3661.8 0
rc107 39.9 22 3515.4 0 17.1 22 3515.4 0 3154.1 22 3504.7 0
rc108 43.6 17 3115.6 0 11.7 17 3115.6 0 4950.6 18 3191.4 0
rc201 559.2 8 5729.6 12 310.7 8 5729.6 12 — — — —
rc202 633.2 8 5248.6 10 415.8 8 5248.6 10 — — — —
rc203 645.4 8 4484.0 7 409.1 8 4484.0 7 — — — —
rc204 634.5 5 3835.8 6 350.5 5 3835.8 6 — — — —
rc205 1166.8 8 5418.7 12 762.6 8 5418.7 12 — — — —
rc206 2217.4 7 4900.0 9 1035.5 7 4900.0 9 — — — —
rc207 1763.2 7 4601.0 9 969.5 7 4601.0 9 — — — —
rc208 4365.7 6 4249.1 8 2435.1 6 4249.1 8 — — — —

Table 6: Results for instances with recharging at the depot and three stations per city.
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DDD DDD-PL MIP
Instance CPU Veh. Compl. Repl. CPU Veh. Compl. Repl. CPU Veh. Compl. Repl.
c101 163.7 13 11589.1 0 109.4 13 11589.1 0 2075.3 14 11507.9 0
c102 1131.3 17 12092.0 1 819.4 17 12092.0 1 4747.5 15 12042.2 2
c103 474.6 11 11996.9 3 319.4 11 11996.9 3 — — — —
c104 157.1 11 11734.8 3 65.6 11 11734.8 3 — — — —
c105 157.6 15 10946.8 0 102.0 15 10946.8 0 2830.1 14 10930.6 0
c106 203.1 16 12518.0 3 136.7 16 12518.0 3 3492.2 16 12198.2 4
c107 204.3 13 10653.1 0 131.1 13 10653.1 0 3925.5 12 10487.1 0
c108 280.3 13 10884.0 0 172.2 13 10884.0 0 5678.6 15 11077.0 0
c109 277.5 13 10612.8 0 167.8 13 10612.8 0 — — — —
c201 575.9 4 10778.6 3 42.8 4 10778.6 3 6230.4 4 10746.7 3
c202 1288.0 7 13123.4 9 178.5 7 13123.4 9 — — — —
c203 4930.8 6 14079.3 9 1421.5 6 14079.3 9 — — — —
c204 2570.6 6 14850.6 7 1425.2 6 14850.6 7 — — — —
c205 774.3 4 10224.1 3 77.2 4 10224.1 3 — — — —
c206 3835.5 5 12270.4 8 1221.1 5 12270.4 8 — — — —
c207 8697.8 5 12641.5 10 1124.0 5 12641.5 10 — — — —
c208 1783.7 4 10091.8 2 347.6 4 10091.8 2 — — — —
r101 28.8 28 4596.6 0 18.7 28 4596.6 0 513.5 28 4619.5 0
r102 59.6 23 3864.5 0 33.7 23 3864.5 0 2821.4 23 3835.1 0
r103 68.9 19 3470.5 0 28.3 19 3470.5 0 5237.5 19 3491.1 0
r104 71.6 15 2951.3 0 16.3 15 2951.3 0 — — — —
r105 61.3 22 3717.0 0 41.9 22 3717.0 0 956.4 23 3913.1 0
r106 62.9 21 3373.2 0 32.0 21 3373.2 0 3517.4 21 3332.1 0
r107 73.4 19 3093.4 0 29.0 19 3093.4 0 5790.4 20 3241.5 0
r108 71.6 16 2937.1 0 14.4 16 2937.1 0 — — — —
r109 87.4 20 3273.5 0 56.3 20 3273.5 0 2191.8 19 3185.3 0
r110 62.3 18 2964.8 0 29.4 18 2964.8 0 3970.4 18 3036.1 0
r111 61.8 18 3126.4 0 24.3 18 3126.4 0 4841.8 18 3079.2 0
r112 68.7 15 2638.0 0 12.9 15 2638.0 0 — — — —
r201 439.5 7 5183.7 10 188.9 7 5183.7 10 — — — —
r202 1228.2 7 5076.0 9 827.9 7 5076.0 9 — — — —
r203 655.5 8 4053.2 8 415.9 8 4053.2 8 — — — —
r204 435.3 5 3602.7 5 223.5 5 3602.7 5 — — — —
r205 5509.8 6 4306.3 8 1222.2 6 4306.3 8 — — — —
r206 7646.0 7 4328.1 7 2577.0 7 4328.1 7 — — — —
r207 14042.4 6 3522.8 5 2011.1 6 3522.8 5 — — — —
r208 1836.2 5 3418.4 6 518.6 5 3418.4 6 — — — —
r209 2253.6 6 4304.3 8 1080.7 6 4304.3 8 — — — —
r210 6243.7 7 4274.3 7 2822.7 7 4274.3 7 — — — —
r211 28924.2 5 3508.6 5 8027.5 5 3508.6 5 — — — —
rc101 36.2 25 4553.7 0 24.5 25 4553.7 0 738.7 24 4400.1 0
rc102 53.1 23 4007.6 0 29.7 23 4007.6 0 2517.9 23 3933.6 0
rc103 60.3 21 3739.8 0 24.2 21 3739.8 0 4609.4 21 3774.4 0
rc104 75.4 15 3123.7 0 19.5 15 3123.7 0 — — — —
rc105 52.1 22 4030.0 0 32.9 22 4030.0 0 1677.6 24 4142.6 0
rc106 67.3 22 3735.4 0 43.2 22 3735.4 0 1632.7 21 3661.8 0
rc107 41.0 22 3515.4 0 17.0 22 3515.4 0 3246.2 22 3504.7 0
rc108 47.3 17 3115.6 0 11.8 17 3115.6 0 5205.7 18 3191.4 0
rc201 817.4 8 5783.4 10 422.7 8 5783.4 10 — — — —
rc202 816.7 7 5042.8 11 461.9 7 5042.8 11 — — — —
rc203 781.4 9 4393.2 7 472.8 9 4393.2 7 — — — —
rc204 1351.0 5 3683.4 6 590.2 5 3683.4 6 — — — —
rc205 1202.1 8 5395.7 11 795.4 8 5395.7 11 — — — —
rc206 5815.9 7 4973.4 9 2376.0 7 4973.4 9 — — — —
rc207 2052.8 7 4784.9 8 1148.8 7 4784.9 8 — — — —
rc208 5848.9 6 4041.8 8 3193.4 6 4041.8 8 — — — —

Table 7: Results for instances with recharging at the depot and five stations per city.
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