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René de Koster
Rotterdam School of Management, Erasmus University, The Netherlands, rkoster@rsm.nl

Scheduling the availability of order pickers is crucial for effective operations in a distribution facility with

manual order pickers. When order-picking activities can only be performed in specific time windows, it is

essential to jointly solve the order picker shift scheduling problem and the order picker planning problem of

assigning and sequencing individual orders to order pickers. This requires decisions regarding the number of

order pickers to schedule, shift start and end times, break times as well as the assignment and timing of order-

picking activities. We call this the Order Picker Scheduling Problem and present two different formulations. A

branch-and-price algorithm and a metaheuristic are developed to solve the problem. Numerical experiments

illustrate that the metaheuristic finds near-optimal solutions at 80% shorter computation times. A case

study at the largest supermarket chain in The Netherlands shows the applicability of the solution approach

in a real-life business application. In particular, different shift structures are analyzed, and it is concluded

that the retailer can increase the minimum compensated duration for employed workers from 6 hours to

7 or 8 hours while reducing the average labor cost with up to 5% savings when a 15-minute flexibility is

implemented in the scheduling of break times.
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1. Introduction

Scheduling order pickers is one of the fundamental decision problems in manual picker-to-part

warehouses, where order pickers walk (or drive) to the storage locations of items to retrieve all

the items specified in a picking list. The order picking process is one of the most labour-, time-
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and capital-intensive activities in warehouses, responsible for more than 50% of the operating

costs (Tompkins et al. 2010). Despite the rise of automated order picking, less than 3% of the

warehouses are fully automated and less than 10% of the warehouses use automated parts-to-picker

systems (Michel 2016). Specifically, Azadeh et al. (2019) estimate that only 40 out of thousands

of warehouses in Western Europe are fully automated. Consequently, manual order picking has

been studied extensively in the literature and most research focuses on the development of travel

time or distance models for various storage assignment, picking routing and order batching policies

(Van Gils et al. 2018b). In contrast, the order picker planning problem which assigns and sequences

orders to order pickers has hardly been studied (Van Gils et al. 2018b). This is an important problem

for warehouses where orders have temporal restrictions such as deadlines. The assignment and the

sequence of execution of orders have a direct impact on the tardiness of orders and on the costs

associated with the order picking operations. Furthermore, as order pickers are humans, the order

picker planning problem is further constrained by shift scheduling decisions, which include decisions

regarding the start and end times of shifts and breaks, as well as the workforce level requirements

for different shifts. The literature on order picker planning ignores these shift scheduling decisions

and only considers a single shift horizon (i.e., shifts with one start and end time for all order

pickers) without the need for breaks (Matusiak et al. 2014, Henn 2015, Scholz et al. 2017, Matusiak

et al. 2017). Consequently, the available solution approaches in the literature can only be applied

in a straightforward manner to manual order picker planning problems in warehouses where orders

do not have temporal restrictions.

Many distribution centers in Western Europe face two main restrictions in the order picking

operations: due time windows of orders and flexible order pickers. On-time retrieval of customer

orders has become more important nowadays with companies offering deliveries to customers within

a small time interval (e.g., one or two business days). To ensure that customer orders are delivered

on time, trucks have departure deadlines from the warehouse. In retail logistics, these departure

deadlines can also be imposed by strict city access time window regulations (Quak and de Koster

2007) and contractual agreements with retail stores (Bodnar et al. 2017). Besides these temporal

restrictions, there are also spatial restrictions due to limited capacity at the outbound staging areas

of warehouses to consolidate orders that need to be delivered by the same truck. Consequently, every

order has a due time window during which it needs to be picked and sent to the allocated staging

lane. These due time windows present severe challenges to warehouse managers in maintaining the

right order picking workforce at the appropriate times. To cover demand during peak periods, a

large number of order pickers is required. These order pickers can become superfluous when the

volume of order picking tasks decreases. To alleviate this problem, warehouses employ flexible order

pickers who can be called upon to work on short notice. The shift start and end times vary for these
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employees, but they are guaranteed a minimum payment equal to the payment corresponding to

the minimum compensated duration, which is defined as the duration of time an order picker is paid

for even if the order pickers is asked to work in a shift with a shorter shift length. Labour laws in

many countries specify a minimum compensation duration. For instance, employees in the United

States, Canada and Australia must be paid for at least 3 hours each time they are required to

report to work. Under these circumstances, the aim of the warehouse manager is to solve the order

picker planning problem such that due time windows of orders are respected while minimizing the

labor cost. This requires them to determine how many order pickers to schedule (including the start

times, end times, and breaks for each order picker), assign the orders that need to be picked during

each shift, as well as the sequence in which the orders are picked by the order pickers. We call this

optimization problem the order picker scheduling problem (OPSP). Most warehouse managers rely

on their experience and intuition to make these decisions. Even though our study is inspired by

the largest grocery retail chain in The Netherlands, the use of flexible order pickers with minimum

compensation and one or multiple break periods is common in many countries. Our definitions of

flexible order pickers and break requirements are fully compliant with the current European Union

(EU) Directive 91/533/EEC (European Parliament, Council of the European Union 1991) as well

as the new Directive (EU) 2019/1152 (European Parliament, Council of the European Union 2019)

that will replace the current Directive in 2022. An overview of other labor laws around the world

are included in Appendix D. Consequently, our study is generally applicable and relevant to many

manual order picking warehouses where orders have tight due times and the resources to prepare

orders (such as the number of staging lanes) and order pickers are limited.

In this paper, we combine the order picker planning problem with the shift scheduling problem

to jointly determine the scheduling of start, end and break times for the shifts of flexible order

pickers as well as the assignment and sequencing of orders with due time windows to these order

pickers. The shift decisions have direct implications for the order picking process that should not be

ignored. In Appendix A, an illustrative example is given that highlights the importance of explicitly

constructing shifts that take breaks into account when orders have due time windows and order

pickers are flexible. The contributions of our work are four fold: (i) We introduce the OPSP to

the order picking literature and formulate the OPSP as a mixed integer linear program (MILP);

(ii) To solve the problem, we present an exact branch-and-price algorithm in combination with an

efficient heuristic to generate tight upper bounds based on the savings algorithm; (iii) We propose

a computationally efficient metaheuristic that is capable of producing near-optimal solutions for

large instances; (iv) A case study is performed to investigate the practical impact of flexible shift

structures and show the impact can be substantial.
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The outline of this paper is as follows. Relevant literature is reviewed in Section 2. Section 3

presents the problem description and the model formulation of the problem. In Section 4, we present

a branch-and-price algorithm to find optimal solutions for the problem. A metaheuristic to solve

the problem is proposed in Section 5. Results from computational experiments and the case study

follow in Section 6. Finally, Section 7 concludes the paper.

2. Literature review

As identified in the previous section, the OPSP operates at the intersection of shift (or personnel)

scheduling and order picker planning. More details on both research streams in the literature are

provided in this section.

Order picker planning problem

When orders have temporal restrictions (such as due time windows) or when they result in penal-

ties when completed early or late, the assignment of orders to order pickers and the sequencing to

execute these orders have a direct impact on the feasibility of workforce schedules and the associ-

ated costs. Elsayed et al. (1993) and Elsayed and Lee (1996) are the first authors to study the joint

order batching and sequencing problem (JOBSP) for a single automated storage and retrieval sys-

tem (AS/RS) where the objective is to minimize the earliness and tardiness of orders. The authors

suggest simple heuristic methods to generate solutions for the problem. Henn and Schmid (2013)

and Henn (2015) extend this work to multiple order pickers, which is considered the joint order

batching, assignment and sequencing problem (JOBASP). The authors suggest iterated local search

and attribute-based hill climber, variable neighborhood search and variable neighborhood depth

algorithms to solve this problem. Tsai et al. (2008) introduce a joint order batching, assignment,

sequencing, and routing problem (JOBASRP), which is an extension of the JOBASP with routing

decisions for the order pickers within the warehouse. Chen et al. (2015) and Scholz et al. (2017)

propose heuristic solution approaches for this problem. Matusiak et al. (2014) investigate a vari-

ation of JOBASRP where the sequencing of batches is not relevant but the routing is part of the

optimization problem which aims at minimizing the overall travel distance. In most applications,

the storage racks are stationary, however, Boysen et al. (2017) consider an interesting variation

with mobile rack warehouses, where an entire storage aisle may need to be moved to access items

in it. Here, the objective is to sequence orders to minimize the number of aisle relocations.

In a recent review on order picking problems, Van Gils et al. (2018b) note that there is hardly

any literature on the integration of the order assignment and sequencing decisions for order pickers

(i.e., the order picker planning problem) while determining the order picking workforce (i.e., the

shift scheduling problem). All work in the literature on scheduling manual order pickers assumes a

single shift start and end time without the need for a break, which can be traced back to Elsayed
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et al. (1993) and Elsayed and Lee (1996). This simplifying assumption is only valid for machine

environments or for manual order picking environments where a fixed number of order pickers

can start and end their shift at only one given time, no breaks are scheduled and orders do not

have temporal restrictions (as discussed in Section 1). When order pickers have fixed employment

contracts, the shift scheduling decisions are typically made at a tactical level or at least before any

order assignment and sequencing decisions are made. However, when order pickers have flexible

employment contracts, it is crucial to make shift scheduling decisions at the same time as the

order assignment and sequencing decisions are made. Figure 1 illustrates the typical order in which

decisions are made in the two types of employment contracts. These differences require us to review

shift scheduling literature which is done in the following. Note that batching is decoupled in both

of the contracts because integrating optimal order batching with other decisions is computationally

prohibitive in realistic settings. Furthermore, an appropriate batching policy alone can explain

much of the variance in travel times of order pickers compared to related decisions (storage, zoning,

and routing) (Van Gils et al. 2018a).

Fixed employment contract Shift scheduling Order batching Order assignment and sequencing

Flexible employment contract Order batching Shift scheduling + Order assignment and sequencing

Figure 1 Sequence of decision problems with fixed and flexible employment contracts for order pickers

Shift (or personnel) scheduling problem

In contrast to the literature on order picking processes, the shift scheduling literature explicitly

considers shift decisions as part of the planning problem. Shift scheduling is one of the oldest

problems in the field of operations research. It dates back to Edie (1954) and Dantzig (1954) who

scheduled toll booth operators and it has received a lot of attention in the literature since then

(Ernst et al. 2004b,a, Van den Bergh et al. 2013). Many of the mathematical formulations are based

on a generalized set covering model where each possible shift (i.e., a combination of start time,

end time, and break placement) is represented by a decision variable. The goal is to determine the

optimal complement of shifts such that operational constraints are satisfied while optimizing some

objective function. It has applications in many industries including airlines, public transportation,

hospitality, military, health care and call centers.

Shift scheduling problems can be divided into two broad categories based on the type of work-

load they consider: workload-coverage problems or task-coverage problems. The main distinction

between these two categories relies on what is known prior to performing the personnel planning.

In workload-coverage problems, the actual tasks that need to be to executed during the planning
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horizon are not known by the time personnel is scheduled. Consequently, the demand for employ-

ees is forecasted based on expected workloads and workers are scheduled to cover these predicted

personnel demands. Employees are usually scheduled to perform one type of task that can be

preempted between employees working in different shifts (e.g., manning a cash register in a shop).

In contrast to workload-coverage problems, the actual tasks that need to be executed are known

in task-coverage problems. Besides the creation of shifts, these problems also include assignment

decisions of tasks to individual employees or shifts such that all, or as many as possible, tasks

are completed. Consequently, task-coverage problems are generally more complicated to solve than

workload-coverage problems. Task-coverage problems can be further divided into two subcategories:

fixed task timing problems and flexible task timing problems. In fixed task timing problems, the tim-

ing when to execute each task is known a priori (therefore, sequencing decisions are not included).

These problems aim to generate schedules that cover the fixed tasks with a minimum number of

machines or shifts. Examples of these problems are fixed job scheduling problems (Fischetti et al.

1987, 1989), interval scheduling problems (Kroon et al. 1995, Kolen et al. 2007) and shift mini-

mization personnel task scheduling problems (Krishnamoorthy et al. 2012). The navy personnel

planning problem studied by Holder (2005) is a closely related problem. Another example of the

fixed task timing problem is the integrated task scheduling and personnel rostering problem, which

generates the roster of employees while explicitly considering the coverage of tasks (Smet et al.

2016). Beliën and Demeulemeester (2008) present a branch-and-price algorithm for the integrated

rostering problem of nurses while incorporating the scheduling of tasks that arise from surgery

schedules. When the planning horizon of the fixed task timing problem is divided in periods and

the duration to execute each task is equivalent to the length of a period, this is known in the

literature as the multi-activity shift scheduling problem (Côté et al. 2011, Elahipanah et al. 2013,

Dahmen et al. 2018).

In flexible task timing problems, the timing when to execute tasks is a decision. Consequently,

sequencing decisions have to be made besides the shift scheduling and task assignment decisions.

For instance, home care workers are assigned to locations where tasks (such as cooking, cleaning

and administering medicine) have to be performed within specific time windows (Rasmussen et al.

2012). Closely related problems include the field workforce scheduling problem where individual

workers with appropriate skills are assigned to geographically distributed tasks (Alsheddy and

Tsang 2011) and the technician task scheduling problem where individuals with the correct skill

mix are assigned to tasks of different priorities (Cordeau et al. 2010, Fırat and Hurkens 2012).

Shift scheduling problem with breaks

The inclusion of breaks in the personnel scheduling literature is mainly limited to workload-coverage

problems only. Thompson (1988) is one of the first authors to explicitly plan for breaks when shift
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schedules are generated. In its simplest form, the set covering formulation of Dantzig (1954) is

extended with additional decision variables to represent breaks and reliefs. For problems involving

a high degree of flexibility with respect to the timing of breaks, the number of enumerated shifts

increases drastically and the resulting set covering problem can be very difficult to solve (if even

possible). To overcome these challenges, Bechtold and Jacobs (1990) propose a compact formulation

that implicitly considers breaks, but is tractable for realistic instances. This model is extended

by Thompson (1995) to consider different types of breaks and even overtime. Aykin (1996) also

presents a compact integer programming model that is capable of considering time windows for

multiple breaks in one shift. Aykin (2000) shows that this model is computationally superior

compared to the formulation in Bechtold and Jacobs (1990), who only consider one break in a

shift. Sungur et al. (2017) present a goal programming approach for the same problem as studied

by Aykin (1996).

The work of Bechtold and Jacobs (1990) is also extended by Brusco and Jacobs (2000) to

introduce break and relief planning in tour scheduling problems. In this type of problem, the aim is

to generate a schedule with multiple shifts for each employee as well as off days during which the

employee is not working. Consequently, the planning horizon is longer compared to shift scheduling

problems. Bard et al. (2007) also model a tour scheduling problem with break and labor rules but

in a stochastic environment of a parcel sorting center. Gérard et al. (2016) present a heuristic that

is based on column generation for a more extensive problem which simultaneously considers off

days, shift scheduling, shift assignments and task assignments within shifts. A key difference of

these problems compared to our OPSP is that the tasks have a fixed timing rather than a time

window during which they need to be performed.

For flexible task timing problems, the scheduling of breaks is only included in the truck driver

scheduling problem. In these problems, the sequence in which locations are visited by trucks has

to be determined while satisfying appropriate time windows. The maximum amount of time a

truck driver is allowed to be on the road is restricted such that breaks and rest periods have to be

considered to satisfy the strict hours-of-service regulations (Goel 2010, Goel and Kok 2012). The

truck driver scheduling problem is extended to vehicle routing decisions in Goel and Irnich (2017).

In these studies, the objective of the problem is to minimize the travel distance. An alternative

objective function for the problem is presented by Tilk and Goel (2020), where the problem aims

to minimize the number of working days for a given route instead of the travel distance.

A comparison between OPSP and the available literature on shift scheduling problems can be

found in Table 1. It becomes clear that the order picker planning problem does not consider shift

scheduling decisions when orders have temporal restrictions. Furthermore, most of the flexible task

timing problems in the shift scheduling literature do not consider the characteristics that are unique
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Table 1 Comparison of OPSP to the shift scheduling and order picker planning literature

Minimum
Coverage Task timing Break compensated

Type of problem (representative paper) Task Workload Fixed Flexible Window timing duration
Parcel sorting center scheduling (Bard et al. 2007) X X
Order assignment sequencing (Scholz et al. 2017) X X X
Fixed job scheduling (Fischetti et al. 1989) X X
Interval scheduling (Kroon et al. 1995) X X
Shift minimization (Krishnamoorthy et al. 2012) X
Nurse rostering and X X
task scheduling (Beliën and Demeulemeester 2008)
Home care scheduling (Rasmussen et al. 2012) X X X
Field workforce scheduling (Alsheddy and Tsang 2011) X X X
Technician task scheduling (Cordeau et al. 2010) X X
Call center scheduling (Bhandari et al. 2008) X X
Hotel staff scheduling (Thompson and Pullman 2007) X X
Navy personnel planning (Holder 2005) X X X
Tour scheduling (Brusco and Jacobs 2000) X X X
Multi-activity shift scheduling (Dahmen et al. 2018) X X X
Truck driver scheduling (Goel and Irnich 2017) X X X X
Order picker scheduling problem X X X X X

to warehouse environments (i.e., tasks with due time windows in combination with flexible workers

who require breaks and a minimum payment).

In the shift scheduling literature with task assignments that have to be performed in a certain

time window, only the truck driver scheduling problem considers breaks. It is therefore the closest

related to our problem formulation. The break requirements for truck drivers considered in Goel

and Irnich (2017) are similar to the break requirements for order pickers considered in the OPSP.

However, a major difference is that Goel and Irnich (2017) focus on minimizing travel distances,

whereas schedule durations do not play a role. The objective in Tilk and Goel (2020) is to minimize

the sum of labor costs and distance-related costs whereas labor costs are related to the number

of working days required to complete the route. The number of hours worked within a working

day does not play a role and most schedules generated actually include long periods of waiting.

The OPSP studied in our work combines elements of minimizing schedule duration with minimum

compensated duration which make the OPSP structurally different from the aforementioned prob-

lems and it necessitates new solution approaches. Our work addresses this gap in the literature

and combines the order picker planning literature and shift scheduling literature. In Section 4, we

further explain the differences between our solution approach to solve the OPSP compared to other

approaches in the literature.

3. Problem description and model formulation

In this section, we explain the warehouse operations that define our order picker scheduling prob-

lem (OPSP) and we formulate the corresponding mixed integer linear program (MILP) model.

Symmetry breaking constraints and additional constraints to tighten the model formulation are

included in Appendix B. An alternative formulation of the problem as a network flow problem is
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presented in Appendix C. This formulation takes more computational effort to solve in our numer-

ical experiments, it is therefore included as reference only. Extending the OPSP formulation with

full-time order pickers and different types of break time constraints are discussed in Appendix D.

Production facilities or retail stores place orders to receive items from a distribution warehouse

based on their needs. An order is composed of multiple order lines, where each order line consists

of a particular item and the corresponding requested quantity. The order lines that should be

processed together create a pick list. The list contains all items that need to be picked and it guides

the order picker through the warehouse. Items that are collected are put in roll cages such that

products in the same roll cage are sent to a single customer. However, a customer’s order can result

in multiple roll cages picked by one or more order pickers. An order picker’s tour finishes when

all roll cages from the pick list are delivered to the corresponding staging lanes at the outbound

docks. The total number of order lines and roll cages can exceed hundreds, which prohibits a

joint optimization of the personnel scheduling and order batching problems within a reasonable

computational effort. Consequently, we assume that order batching (i.e., the construction of pick

lists) is done a priori. In the remainder of the paper, we use the term batch to refer to a pick list

that is to be completed by a single order picker in a single pick tour.

Let I be the set of batches that are generated a priori. The time required to pick batch i∈ I is

denoted by ti. It includes the time for an order picker to travel between product locations of items

in the batch, search for the items, place them in roll cages, and transport the filled roll cages to the

staging lanes. We assume that ti is independent of the order picker and its value is deterministic

since the picking route is determined by the storage locations of the items in the batch and the

routing strategy of the warehouse. The company in our case study uses norm times that are set to

pick a certain batch.

Each batch i ∈ I has a corresponding delivery due time window [ri, di]. All items in the batch

have to be delivered to the designated staging area(s) within this time window. The values of ri

and di are determined based on the outbound truck departure schedule and the capacity of the

staging lanes. The value of ri usually corresponds to the departure time of the previous vehicle

that departed from the same staging lane as where the vehicle for batch i is departing from, and

di is the latest time batch i can be delivered at the staging lane for the vehicle to depart on time

(i.e., without violating the delivery due time at the customer).

Let P represent the set of the flexible order pickers that can be employed by the warehouse,

where |P | = pmax. Flexible workers are scheduled to work when needed, and as such, they are

assigned one of a variety of possible shift lengths with different start times on any day. They are

only compensated for the amount of time they spend at the warehouse. Although there is often

no restriction on the minimum shift length for a worker, warehouses favor providing a minimum



10

compensation if an employee is scheduled to work. This improves the working relation between the

flexible order pickers and the warehouse to increase employee retention. The time corresponding

to the minimum compensation duration is denoted by Tmin. The maximum amount of time an

employee can work per day is restricted by law and gives an upper limit on the shift length, which

we denote by Tmax.

There are also labor rules and union agreements on breaks for human order pickers. The amount

of time an employee can work without a break is denoted by Tbreak. If an employee works for a

duration that exceeds Tbreak time units she must be given an uninterrupted break of at least lb

time units. An employee can be entitled to more than one break in the same shift depending on the

values of Tbreak and Tmax. The length of the planning horizon is Tday time units. Formulations for

alternative types of breaks are presented in Appendix D. We assume that order picking is scheduled

non-preemptively and breaks cannot interrupt this. Interrupting a pick tour and leaving picking

equipment in the storage area creates congestion as well as safety and security hazards. Limited

parking space for order picking equipment in the break areas and issues of theft or responsibility

of already picked items may also prevent preemptive batch scheduling. In case breaks can preempt

the order picking of a batch, we propose an updated solution framework and perform a numerical

comparison in Appendix K.

Even though flexible employees can potentially start and end their shifts at any time, many shift

start and end times are an administrative and operational burden, and labor union agreements

can prohibit this as well (Brusco and Jacobs 1998). Furthermore, employees are paid in integral

multiples of a certain duration (even if they completed the last task of their shift before the end

of a certain time period). Therefore, we divide the planning horizon into W time periods of equal

length, where each period consists of l time units. The set of admissible time periods to start or

end a shift is denoted by S and E, respectively. Note that the discretization of the time horizon

is only used for the start and end times of shifts. The actual tasks that need to be executed can

still start and end at any point in time during the shift (i.e., they do not have to coincide with the

time periods) and the same holds for breaks.

We make the assumption that all order picking operations associated with the batches in the

planning horizon are performed within the same planning horizon, and we assume that all shifts of

the order pickers start and end in the same planning horizon that they are scheduled for (i.e., there

is no overlap between either order picking tasks of a batch or shifts of order pickers in different

planning horizons).

Furthermore, we define a task as an activity that needs to be scheduled; either picking orders

of a batch or taking a break. Arranging tasks in a sequence creates a shift, and each task in the

sequence has a position (first, second and so on). This is illustrated with a Gantt chart in Figure 2.
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Employee 1 Batch 4 Batch 5 Break Batch 10

Employee 2 Batch 2 Idle Batch 7 Break Batch 13

Figure 2 A Gantt chart to illustrate the concepts of tasks, shifts and task positions in a sequence

Table 2 Overview of the parameters for the order picker scheduling problem (OPSP)

notation description
P set of order pickers that can be scheduled, {1, . . . , pmax}
I set of batches that need to be picked
K set of positions in which an order picker can perform a task, {1, . . . , k̄}
ti duration to pick and deliver the items of batch i∈ I
ri earliest due time of batch i∈ I
di latest due time of batch i∈ I, where di ≥max{ri, ti}
Tmin minimum time an order picker needs to be compensated if scheduled
Tmax maximum shift length
Tbreak maximum time duration an order picker can work consecutively without a break
Tday length of the planning horizon
l length of a time period
J set of time periods, {1, . . . ,W}
S set of time periods where a shift can start at the beginning of that period, S ⊆ J
E set of time periods where a shift can end at the end of that period, E ⊆ J
lb duration of a break
M a very large number

Employee 1 picks the items in batch 4 and 5 successively, then takes a break, and finally picks

items in batch 10 before ending her shift. Note that the order picker completes four tasks but not

necessarily consecutively (i.e., there can be an interruption or gap between two successive tasks),

which is the case for Employee 2. Each order picker can perform at most k̄ tasks in a shift. A

summary of all parameters is provided in Table 2.

The following decision variables are used in our model formulation:

xikp is 1 if batch i∈ I is scheduled to be picked at the kth position in the shift for order
picker p∈ P , where k ∈K, else 0

ykp is 1 if a break is scheduled at the kth position in the shift for order picker p ∈ P ,
where k ∈K, else 0

sjp is 1 if order picker p∈ P starts the shift at the beginning of period j ∈ S, else 0
ejp is 1 if order picker p∈ P ends the shift at the end of period j ∈E, else 0
ckp completion time of the task scheduled at the kth position in the shift for order picker

p∈ P , where k ∈K
mp amount of time for which order picker p∈ P is compensated

The order picker scheduling problem (OPSP) is formulated as a MILP model as follows:

OPSP:

min
∑
p∈P

mp (1)
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subject to ∑
i∈I

xikp + ykp ≤ 1 ∀k ∈K,p∈ P (2)∑
k∈K

∑
p∈P

xikp = 1 ∀i∈ I (3)∑
i∈I

xi1p + y1p ≤
∑
j∈S

sjp ∀p∈ P (4)∑
j∈S

sjp =
∑
j∈E

ejp ∀p∈ P (5)

c1p ≥
(∑
j∈S

(j− 1)sjp

)
l+
∑
i∈I

tixi1p + lby1p ∀p∈ P (6)

ckp ≥ ck−1,p +
∑
i∈I

tixikp + lbykp ∀k ∈K \ {1}, p∈ P (7)∑
j∈E

(jejp)l≥ ck̄p ∀p∈ P (8)

ckp +M(1−xikp)≥ ri ∀i∈ I, k ∈K,p∈ P (9)

ckp−M(1−xikp)≤ di ∀i∈ I, k ∈K,p∈ P (10)

ckp−
(
chp−

∑
i∈I

tixihp

)
≤ Tbreak +M

( k∑
k′=h+1

yk′p

)
∀h,k ∈K,h< k,p∈ P (11)∑

i∈I

xik−1,p + yk−1,p ≥
∑
i∈I

xikp + ykp ∀k ∈K \ {1}, p∈ P (12)

Tmin
∑
j∈S

sjp ≤mp ∀p∈ P (13)(∑
j∈E

jejp−
∑
j∈S

(j− 1)sjp

)
l≤mp ∀p∈ P (14)

ckp ≥ 0 ∀p∈ P,k ∈K (15)

xikp ∈ {0,1} ∀i∈ I, k ∈K,p∈ P (16)

ykp ∈ {0,1} ∀k ∈K,p∈ P (17)

sjp ∈ {0,1} ∀j ∈ S,p∈ P (18)

ejp ∈ {0,1} ∀j ∈E,p∈ P (19)

0≤mp ≤ Tmax ∀p∈ P (20)

The objective function (1) expresses the minimization of the total labor cost over all order

pickers who are scheduled to pick the items that need to be delivered during the planning horizon.

Constraints (2) ensure that an order picker can perform at most one task in the k-th position of

her shift. Constraints (3) ensure that each batch is picked exactly once. An order picker can only

perform the first task in a shift if she is scheduled to start a shift according to constraints (4).

Constraints (5) ensure that every order picker who starts a shift also has to end a shift (and vice

versa).
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Constraints (6) and (7) determine that the task in the k-th position of the order picker’s shift

can only be labeled as completed after it is executed. Constraints (8) ensure that the order picker

can only finish her shift after completing the last assigned task. Constraints (9) and (10) require

that batches are completed within their due time windows. Note that an order picker can have

fewer than k̄ tasks assigned to her shift. In that case, for all positions in a shift without an actual

task assigned (i.e., for all k where
∑

i xikp + ykp = 0), the completion times ckp are set equal to the

completion time of the last assigned task (i.e., ckp = ck−1,p).

Constraints (11) require that an order picker cannot work successively for a duration more than

Tbreak time units without a break. The constraint specifies that the time between the start of the

task at position h of the shift and the end of the task at position k, where k > h, has to be less

than or equal to Tbreak in case no break is scheduled between these two tasks. Constraints (12)

specify that a task can only be assigned to a position if there is also a task assigned to the previous

position.

Constraints (13) ensure that an order picker is compensated for at least Tmin time units if she

is scheduled to work. Constraints (14) ensure that an order picker is compensated for at least the

amount of time the order picker is scheduled to work (i.e., from the start time of the shift to the end

time of the shift). Constraints (15) to (20) define the domain and range of the decision variables.

Proposition 1. Generating a feasible solution for the OPSP is NP-hard in the strong sense.

Proof. P | |CMAX problem is a special case of the OPSP.

4. Branch-and-price algorithm for OPSP

This section outlines an exact procedure to solve the OPSP using a branch-and-price framework. In

this solution approach, the linear relaxation in each node of a branch-and-bound tree is solved with

column generation (Barnhart et al. 1998, Vanderbeck 2000). A branch-and-price solution approach

remains a successful and popular solution strategy for generating optimal solutions for problems in

a variety of fields ranging from transport planning (Bertsimas et al. 2019), routing (Dellaert et al.

2018) to personnel scheduling (Van den Bergh et al. 2013). We also develop a branch-and-price

algorithm for the order picker scheduling problem. We first present the reduced master problem

(RMP). The pricing problem to verify the optimality of an LP solution is presented in Section 4.2.

The branching that occurs when the LP solution does not satisfy the integrality conditions is

discussed in Section 4.3.

The proposed framework for the branch-and-price algorithm has similarities to the one used by

Goel and Irnich (2017). However, because we use the schedule duration in the objective function

(which includes employee waiting times between the performance of two tasks) and include the



14

minimum compensated duration as constraints, the details of the building blocks for the branch-

and-price algorithm are different from the algorithm in Goel and Irnich (2017). Specifically, the

augmented graph for the pricing problem requires information on shift starting and ending times.

The definitions of resources and resource extension functions that are used to solve the pricing

problem also differ and are more comparable to those used for the minimum tour duration problem

(MTDP) (Tilk and Irnich 2017) rather than the truck driver scheduling problem. Furthermore,

because of the constraints regarding the minimum compensated duration and flexible breaks, the

problem suffers from significant issues of symmetry. Therefore, we develop a tailored acceleration

strategy to address these issues (see the end of Section 4.2).

4.1. Reduced master problem

To present the reduced master problem for the OPSP in a column generation format, we first

introduce the concept of a column as a feasible shift schedule that is specified by the start and

end time as well as the assignment and sequence of tasks (both order picking and breaks) to be

performed by a single order picker while respecting the due time windows of order picking tasks,

maximum shift length Tmax and maximum time between breaks Tbreak. Let Ω denote a set of all

feasible schedules, where Ω′ is a subset of Ω (i.e., Ω′ ⊆ Ω). The cost for an individual schedule

q ∈Ω′ is given by mq. The parameter αiq is set to 1 if batch i is processed (or picked) in schedule

q, and zero otherwise. The decision variable θq represents the number of schedules of type q to be

selected in the solution. The reduced master problem (RMP) can be formulated as a set covering

problem:

RMP:

min
∑
q∈Ω′

mqθq (21)

subject to

∑
q∈Ω′

αiqθq ≥ 1 ∀i∈ I (22)∑
q∈Ω′

θq ≤ pmax (23)

θq ≥ 0 ∀q ∈Ω′ (24)

The objective in the RMP is the same as in the OPSP. Constraints (22) ensure that all batches

are processed (or covered) with the selected schedules. Constraints (23) do not select more than

pmax schedules to be performed by order pickers. The constraints (2) and (4) to (20) of the OPSP

are included in the pricing problem where columns are generated that result in feasible schedules.
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4.2. Pricing problem

The pricing problem for the OPSP can be formulated as an Elementary Shortest Path Problem

with Resource Constraints (ESPPRC) (Feillet et al. 2004). This is a variation of the Shortest Path

Problem with Resource Constraints (SPPRC) where cycles are not allowed, i.e., a node cannot be

visited more than once. The SPPRC can be solved with pseudo-polynomial algorithms (Irnich and

Desaulniers 2005), whereas the ESPPRC is NP-hard in the strong sense (Dror 1994). Nevertheless,

ESPPRC is known to generate a superior lower bound compared to SPPRC when used as pricing

problem (Contardo et al. 2015). A technique to solve the ESPPRC is a labeling algorithm based on

dynamic programming (Feillet et al. 2004). This approach uses the concepts of resources in a graph

and resource extension functions. A resource is an arbitrary one-dimensional piece of information

that can be determined or measured at the vertices of a directed walk in a graph (e.g., cost, time,

load). In this paper, time is the main resource. Labels are used to store the information on the

resource values for partial paths. Labels reside at vertices and they are propagated via resource

extension functions when they are extended along an arc. To keep the number of labels as small as

possible, we define dominance rules to identify labels that need not be extended. We first introduce

the graph structure, labels, resource extension functions and dominance rules.

Graph representation Consider a subgraph G= (V,A), where V is the set of vertices indicat-

ing the set of batches i∈ I that have to be picked and the arcs A indicate the subsequent sequence

in which the batches are completed. The nodes in the sets S and E indicate the start and end

times of a shift, respectively. Furthermore, dummy origin and destination nodes are indicated by

o and d, respectively. The complete set of all vertices is V ′ := {o}∪S ∪V ∪E ∪{d}.
We introduce arcs between the dummy origin node o and the shift start time nodes in S, between

each vertex in S and V , between each vertex in V and E as well as between the shift end time

nodes and the dummy destination node d. See Figure 3 for an example. The travel time for each

arc is set to zero. The service time ti at each node i ∈ V equals the processing time of batch i,

whereas the service time at the remaining vertices V ′ \V is zero.

The time windows for the origin and destination nodes are [ri ; di] = [0 ; Tday] for i ∈ {o,d} such

that these nodes can be visited at any time during the time horizon. For the shift start time nodes

i∈ S, the value of ri = di equals the possible shift start times such that these nodes are visited at

these specific times. Similarly, for the shift end time nodes i ∈ E, the value of ri = di equals the

possible shift end times. A feasible schedule for an order picker comprises of a tour from node o

to node d respecting the due time windows [ri ; di] for i∈ V ′, maximum shift length Tmax and the

time until breaks Tbreak. As an illustrative example, Figure 3 represents a graph where there are

three possible shift start and end times. The dashed arrow indicates a feasible schedule that starts

at s1, then executes batch i3 and ends at e1.
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Figure 3 A representation of a graph structure for the pricing problem of the OPSP with 3 shift start and end

times and 3 batches

Labels A partial schedule corresponds to a partial path in the graph G. A partial schedule h

where vertex i is visited as last node is defined by label Lih = (i, cih, Ti, (V
1
h , . . . , V

|V |
h )), where

• i is the last vertex that has been visited in the partial schedule

• cih is the reduced cost of the partial schedule (i.e., the actual cost minus the dual values of the

nodes visited, see below for more details)

• Ti = (T timei , T duri , T starti , Tworki , T brki ) indicates the resource vector, where the resource variables

are

- T timei is the time when the batch at node i is completed

- T duri is the minimum duration required to service all the nodes in the partial schedule

including the waiting times if necessary to respect the due time windows

- T starti is the latest possible start time of the shift to feasibly visit all of the vertices in the

partial schedule while respecting the due time windows

- Tworki is the amount of time since the end of the last break

- T brki is the latest time to start picking the first batch after the previous break to ensure

feasibility of the schedule

• V v
h is 1 if node v ∈ V is visited in the partial schedule or if it is infeasible to visit (due to the

due time windows or maximum shift length), 0 otherwise

To guarantee elementarity of a (partial) path, it is sufficient to add the extra resources V v
h for each

node v ∈ V indicating whether or not the node has been visited on the path. When this resource

has the value one, it prohibits the path to re-enter previously visited nodes. Feillet et al. (2004)

enhance this idea by observing that some nodes are not reachable due to the resource constraints,

which they indicate by setting the resources V v
h to one for these nodes without the path having to

visit them. They use this to speed up the dominance check, which is explained later in this section.

The resource windows of resource vector Ti are given by T timei ∈ [ri ; di], T
dur
i ∈ [0 ; Tmax], T

start
i ∈

(−∞ ; Tday], T
work
i ∈ [0 ; Tbreak], and T brki ∈ (−∞ ;∞). A path is called resource-feasible if there

exist resource vectors for each node in the path that satisfy their resource windows. Therefore, a
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feasible schedule is a resource-feasible path that starts in o and ends in d. Furthermore, let Li

denote the set of all labels corresponding to partial schedules where node i∈ V ′ is the last visited

node.

The initialization of a label is done at shift start nodes i ∈ S as Lih = (i, Tmin −

ψ,Ti, (V
1
h , . . . , V

|V |
h )), where ψ is the dual variable associated with Constraint (23) of the RMP,

T timei = di, T
dur
i = 0, T starti = di, T

work
i = 0 and T brki =∞, and V j

h = 0 for all nodes j ∈ V .

Resource extension functions A resource extension function (REF) is used to extend a label

(or partial schedule) with an additional vertex such that all constraints related to the scheduling

problem are still satisfied. There are two options to extend label Lih at vertex i to vertex j when

V j
h = 0. The first extension executes the batch in node j directly after finishing the batch in node

i without a break. The second extension starts with a break before the execution of the batch in

node j. Consequently, we consider the two resource extension functions f(·) and g(·), respectively.

The resource extension functions f(Ti, j) for the extension of label Lih to node j without a break

define the new resource variables of resource vector Tj as follows

T timej = f time(Ti, j) := max{T timei + tj, rj} (25)

T durj = fdur(Ti, j) := max{T duri + tj, rj −T starti } (26)

Tworkj = fwork(Ti, j) := max{Tworki + tj, rj −T brki } (27)

T brkj = f brk(Ti, j) := min{dj − (Tworki + tj), T
brk
i } (28)

Similarly, when label Lih is extended with a break before the order picking task is completed as

indicated by node j, the resource extension functions g(Ti, j) define the resource vector Tj as

T timej = gtime(Ti, j) := max{T timei + tj + lb, rj} (29)

T durj = gdur(Ti, j) := max{T duri + tj + lb, rj −T starti } (30)

Tworkj = gwork(Ti, j) := tj (31)

T brkj = gbrk(Ti, j) := min{dj − tj,∞} (32)

Note that the resource variable T starti is never updated after it is set in the shift start node. The

REF for T timej is a classic REF from the routing literature (Irnich 2008). The REFs for T durj and

T starti bear resemblance to REFs from the MTDP (Tilk and Irnich 2017). The REFs for Tworkj

and T brkj are new and specifically designed to determine the amount of time elapsed since the last

break. Desaulniers and Villeneuve (2000) use similar extension functions to estimate the cost of

waiting at nodes for the shortest path problem with time windows and linear waiting costs.
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The reduced cost for the partial schedule when label Lih is extended to node j, is given by

cjh := max{Tmin, T durj }−πj−ψ−
∑
ĵ∈B̂h

πĵ, where πj is the dual value of constraints (22) for vertex j, ψ

is the dual value associated with constraint (23), and
∑
ĵ∈B̂h

πĵ indicates the accumulated dual values

associated with constraints (22) for the set of batches previously added to the partial schedule

represented by the set B̂h. Note that the payment to pickers for the entire period (even if they

work only for a fraction of the period) is accounted for by the use of shift end nodes which restrict

the visit to the shift end nodes at the end of a period.

The resource V j
h is set to one to prevent that vertex j is visited again. Furthermore, V j′

h is also

set to one for any node j′ ∈ V ′ that cannot be visited anymore when node j is added to the partial

path because of the resource constraints. The new label is then given by Ljh := (j, cjh, Tj, Vh), which

is only feasible if the resource variables of the resource vector Tj fall within the associated resource

windows.

Dominance A dominance principle can be used to accelerate the solution technique by elim-

inating unnecessary labels. To define dominance in our pricing problem, we note that the REFs

are either non-decreasing or non-increasing, such that an element-wise comparison can be made

to determine dominance (Irnich and Desaulniers 2005). A label Lih dominates a label Lih′ if both

labels reside at the same vertex i∈ V ′ and if, for each feasible extension of Lih′ to Ljh′ , there exists

a feasible extension of Lih to Ljh where the value of each resource with a non-decreasing (or non-

increasing) REF is less than (or larger than) or equal to the value of the resource in the extension

of Lih′ , i.e., cih ≤ cih′ ; T timei,h ≤ T timei,h′ ; T duri,h ≤ T duri,h′ ; T
start
i,h ≥ T starti,h′ ; Tworki,h ≤ Tworki,h′ ; T breaki,h ≥ T breaki,h′ ;

V v
h ≤ V v

h′ ∀v ∈ V . Consequently, the partial schedule corresponding to label Lih′ cannot be part of

the optimal solution. Note that the differentiation of time resources Ti for label h and h′ is done

for comparison required by dominance. For ease of notation, we do not use the differentiation of

time resources for specific labels in the remainder of the paper.

Labeling algorithm The pricing problem is solved by embedding the resource definitions,

resource extension functions and dominance rules in the label correction algorithm by Feillet et al.

(2004). The pseudocode for the labeling algorithm is presented in Appendix E .

Acceleration strategies Acceleration strategies are commonly used to speed up branch-and-

price algorithms and are key to successfully solving sizable problems (Kallehauge et al. 2005). We

propose three acceleration strategies for the pricing problem.

Initial columns: It is known that column generation with good initial upper bounds accelerates

the convergence of the linear relaxation at the root node (Desaulniers et al. 2002). Therefore,

we first generate initial primal solutions with the savings algorithm outlined in Section 5.1. This



19

algorithm aims to rapidly find a feasible solution. If the savings algorithm is not able to generate

a feasible solution with at most pmax order pickers, the initial columns for column generation are

initialized with an additional artificial column that covers all batches of the problem and has an

arbitrarily high cost to ensure that this artificial column will not be part of the optimal solution.

Limited extension: To exploit the time windows and processing time information between order

picking tasks to reduce the use of REFs, we first present the following proposition. The proof of

this proposition is presented in Appendix F.

Proposition 2. If there is an optimal schedule with two batches i and j such that ri ≥ rj,

di ≥ dj, ti < tj and i precedes j in the same order picker’s schedule without a break in between the

execution of the two batches, the execution order can be reversed with the same objective function

value.

For any partial schedule h ending with node i (i.e., presented by label Lih), if there is a node j for

which V j
h = 0 and the conditions in Proposition 2 satisfy, we only have to consider the extension

with a break between the execution of the batches from node i and j. Consequently, we limit the

extension of resources in the arc (i, j) with the resource extension function g(·) only. This particular

strategy allows us to have fewer extensions and maintain a smaller set of labels while solving the

pricing problem.

Limited discrepancy search: Desaulniers et al. (2008) and Spliet et al. (2018) show that the

branch-and-price algorithm can be solved more efficiently when the pricing problem is solved with

heuristics until no negative reduced costs are found (such that no new columns are added to the

RMP). Along the same principle, as proposed by Feillet et al. (2007) and Goel and Irnich (2017),

we use limited discrepancy search (LDS) to heuristically accelerate the generation of columns with

a negative reduced cost.

LDS speeds up the pricing problem by maintaining a limited set of labels and heuristically

removing so-called unpromising labels from the problem. In our pricing problem, labels with batches

that require large waiting times and numerous breaks are considered unpromising labels. The

waiting time between two nodes i and j is measured as the time window distance TWdistance(i, j) :=

max{0, rj − di}. The outgoing arcs from each node i are partitioned into two sets called good arcs

and bad arcs based on TWdistance. An additional resource (denoted as lbad) is included to the label

that is increased by one if a label traverses through an arc from the set of bad arcs or if it is

extended with a break. Only labels that have lbad ≤Λ are extended, where the threshold Λ is called

the discrepancy limit. If the LDS is unable to find any columns with a negative reduced cost, the

value of Λ increased by one and the LDS is repeated. When the discrepancy limit reaches an upper

bound, the LDS terminates and the ESPPRC is solved with the labeling algorithm. Additionally,
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an iteration of LDS is terminated if 100 columns with negative reduced cost are generated. Note

that the use of LDS does not impact the optimality of the branch-and-price technique since the

last pricing problem at every node of the branch-and-bound tree is solved exactly with ESPPRC.

4.3. Branching

If the pricing problem cannot find columns with a negative reduced cost and the LP solution to

the RMP is not integral, a node of the branch-and-bound tree is selected for branching. Branching

is done on flow variables using the best-lower-bound-first strategy (Desaulniers 2010).

A good upper-bound solution improves the efficiency of the branch-and-price technique by reduc-

ing the number of branch nodes in the search tree (Danna and Le Pape 2005). In our solution

procedure, before branching from the root node, we solve the MIP of the RMP where we only

consider the columns that are generated at the root node. The solution to the MIP provides the

upper bound before branching. If the root node is not solved within the time limit, the MIP of

the RMP is solved with the available columns to derive the best known upper-bound solution for

benchmarking purposes.

5. Metaheuristic for OPSP

Given the size of real-world instances of the OPSP and the computational complexity of the prob-

lem, even the branch-and-price technique developed in the previous section is not likely to be a

viable solution approach in real-life applications. In this section, we present an efficient metaheuris-

tic that adapts the classic savings principle by Clarke and Wright (1964) to generate an initial

feasible solution and that solution is improved by a large neighborhood search algorithm (LNS)

with simulated annealing (Pisinger and Ropke 2010).

5.1. Savings algorithm

The savings algorithm iteratively combines two schedules into one schedule based on the savings

principle (Clarke and Wright 1964). The procedure begins by relaxing the maximum number of

order pickers constraint and creating schedules that each consist of one batch to be picked. Then,

it iteratively determines the saving in terms of the labor cost that is generated when two schedules

are combined into one schedule (if possible). This saving is easy to calculate. Consider that schedule

h′ and h′′ are combined in a feasible schedule h with the corresponding compensation mh′ , mh′′

and mh, respectively, then the savings is (mh′ +mh′′)−mh. Combining batches in two schedules

into one schedule has the potential to overcome inefficiencies of individual schedules when these

schedules have waiting times (or breaks) between tasks or the shift length is shorter than Tmin

time units.

To verify whether two (randomly) selected schedules can be combined into one schedule, we try

to solve a simplified (or reduced) version of our OPSP, which is formulated as a MILP model in
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Appendix G. Since the reduced problem finds the optimal schedule for only one order picker (or one

shift) with a small number of order picking tasks, the MILP can be solved exactly in a reasonable

amount of computation time. Even though the computation time of the MILP for the reduced

problem is short, a set of infeasibility checks can be performed first as pre-processing step to easily

verify whether the order picking tasks cannot be combined in a feasible schedule. See Appendix G

for the infeasibility checks. If these checks do not rule out that a feasible schedule can be found,

the reduced OPSP with one order picker is solved. If no feasible solution is found, it is concluded

that the two schedules cannot be combined. Otherwise, the solution of the MILP model provides

the combined schedule with the largest savings (i.e., it finds the optimal sequencing of the order

picking batches).

In the classical savings algorithm by Clarke and Wright (1964), the savings of combining any

given two schedules are calculated first before combining solutions in a given iteration of the

algorithm. However, in this paper, if any two randomly selected schedules can be combined in

a feasible schedule and result in a savings of at least Tmin time units, the combined schedule is

accepted immediately and the two individual schedules will not be considered for other savings in

the same iteration of the savings algorithm. If no two schedules exist that can be combined in a

feasible schedule that also results in sufficient savings of at least Tmin, all possible combinations are

first calculated and then the schedules are combined such that the maximum savings is achieved.

The procedure continues until no savings can be realized while combining schedules. When no

further savings can be realized and the number of schedules in the solution is less than pmax, a

feasible solution is found that satisfies all constraints of the OPSP and the algorithm terminates.

If no feasible solution is found, the savings algorithm enters the second phase, in which the batches

of any pair of schedules are chosen to be combined in a new schedule that results in the largest

savings (which can be the least negative savings or additional cost) until the number of schedules

equals pmax.

5.2. Large neighborhood search for improved solutions

After a feasible solution for the OPSP is generated by the savings algorithm, this solution is

improved with a large neighborhood search (LNS) procedure. Let us denote the feasible solution

at the beginning of an iteration by π, where the corresponding cost (or objective function value) is

z(π) :=
∑
p∈P

mp. This solution is destroyed and then repaired in every iteration, which results in a

new feasible solution π′ with cost z(π′). Furthermore, let the best found solution so far be denoted

by π∗. The decision whether π′ becomes the starting solution in the next iteration is based on a

simulated annealing principle: if z(π′)< z(π∗) then π∗ := π′ and π := π′, otherwise π′ is accepted

as new solution π with probability e−(z(π′)−z(π∗))/T , where T is the temperature that is initialized
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as T :=−w · z(π∗)/ln(0.5) (Ropke and Pisinger 2006). The value is updated at the end of every

iteration: T := ρT , where 0<ρ< 1 is the cooling parameter. Consequently, it becomes less likely

for worse solutions to be accepted as the starting solution in the next iteration when the number

of iterations increases. If the best solution is not improved in nT iterations, the temperature is

reset to the inital value (−w · z(π∗)/ln(0.5)), such that it is more likely to explore new areas in the

feasible solution space.

Destruction and repair The LNS destroys and repairs the solution π in two stages. In the

first stage, two order pickers are selected. The first order picker is selected probabilistically with

a roulette wheel principle based on a wastage ratio. The wastage ratio of an order picker is the

fraction of the amount of unproductive duration spent by the order picker compared to the total

unproductive hours spent by all of the order pickers in the solution. The wastage ratio for order

picker p ∈ P , who is assigned to complete the batches Bp with the cost mp in solution π, is given

by

wp :=
mp−

∑
i∈Bp ti∑

p′∈P (mp′ −
∑

i∈Bp′
ti)

∀p∈ P. (33)

If an order picker has a higher wastage ratio, she is likely to be chosen as the first picker. The

second order picker is randomly selected among the remaining order pickers.

In the second stage, the batches previously assigned to the two selected order pickers are reas-

signed to generate a new (feasible) solution π′. For this purpose, we use one of two operators with

equal probability. The swap operator exchanges a random subset of batches between the two order

pickers. The insert operator randomly selects a subset of batches from the first order picker and

assigns them to the second order picker. In the literature, swap and insert operators are typically

designed to exchange or insert one job, task or trip at a time. The swap and insert operator in

this work swaps and inserts multiple batches at a time. This allows us to generate new solutions

that would otherwise require multiple operations with the traditional operators. The number of

batches to swap or insert from each order picker is uniformly sampled between one and σ (which

is a user-set parameter). If the best solution is not improved by nσ iterations, the value of σ is

reduced by 1.

After the batches are reassigned to these two order pickers, the sequencing of the batches and

scheduling of shifts for the order pickers is determined by solving the same MILP of the reduced

problem as in the savings algorithm (see Appendix G). Note that we also verify whether any of the

infeasibility conditions is satisfied before solving the reduced problem. Rather than directly solving

a MILP, other solution techniques can be proposed to solve the reduced problem. For instance, the

pricing problem in Section 4.2 can be adapted to develop a dynamic programming (DP) algorithm
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by creating a new graph for each reduced problem, in which only the relevant batches assigned

to a picker are included and a path starting at the dummy source (i.e., node o) has to visit all

batch nodes in the graph before returning to the dummy sink (i.e., node d). At the dummy sink,

the solution with the cheapest cost is selected and returned to the metaheuristic for evaluation.

In limited numerical experiments, this DP approach to solve the reduced problem produced the

same results as the MILP approach but with shorter computation times. However, the development

of a DP algorithm requires labels, resource extension functions, dominance rules and acceleration

techniques that need to be tailored to solve a specific reduced problem. If there would be additional

restrictions in the original problem formulation (such as an upper bound on the ratio between

flexible to full time order pickers, a maximum number of order pickers at any time or specific

time windows for different types of breaks), these components of the DP algorithm need to be

redefined. In contrast, the MILP approach is able to address different variations of the original

problem without the need to change the code (see Appendix D). To accommodate flexibility in our

solution approach and easily adjust to different warehouse environments, we present the LNS that

uses the MILP approach to solve the reduced problem.

Figure 4 illustrates how the two destroy operators work based on a simple example. The initial

schedules of the two selected order pickers are represented by X1 and X2. With the swap operator,

batch 2 and batch 6 are interchanged. The new batches assigned to the order pickers are indicated

by B1′
Swap and B2′

Swap, respectively. With the insert operator, batch 2 is unassigned from the first

order picker and assigned to the second order picker. The new batches assigned to the order pickers

are then indicated by B1′
Insert and B2′

Insert, respectively. After solving the MILP as formulated in

Appendix G for each of the two order pickers individually, we obtain the new schedules X1′ and

X2′ , respectively.

The LNS terminates if z(π∗) does not exceed the lower bound formulated in Equation (43) (see

Appendix B), if the number of iterations exceeds a maximum threshold or if the run time exceeds

a maximum threshold. Once the LNS terminates and time is available, we pass the LNS solution

to the branch-and-price algorithm to improve the solution further by solving the pricing problem

for one iteration without solving the ESPPRC exactly.

6. Results

This section presents a numerical comparison of the branch-and-price algorithm (Section 4), savings

algorithm (Section 5.1) and metaheuristic (Section 5.2) to solve the OPSP. Since state-of-the-art

commercial solvers such as Gurobi 9.0.1 (Gurobi Optimization 2020) are not able to generate an

optimal solution for even the smallest instances and the branch-and-price algorithm outperforms

Gurobi without exception, we do not report the performance of such commercial solvers here. See
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Figure 4 Illustration of the destroy operations in an iteration of the LNS algorithm, where 0 in a schedule

represents a break

Appendix H for a comparison of the performance of commercial solver Gurobi and the branch-

and-price algorithm. Furthermore, no existing solution procedures from the literature are included

as benchmark since the authors are not aware of any other work that makes the same (or even

similar) decisions and the objective function (see also Section 2).

All solution procedures are implemented in C ++ and run on an i7 3.60GHz machine with 16GB

of RAM. For the parameters of the branch-and-price algorithm, the maximum number of good arcs

from any node is set to 2 and the number of increments for the discrepancy limit in LDS (i.e.,

Λ) is set to 10. The parameters values for the metaheuristic are guided by the literature, where

ρ := 0.95 and nT := 200 (Bodnar et al. 2017, Stenger et al. 2013). The initial value of σ is set to

4 and nσ to 1,250. Furthermore, w := 0.1 produced the best results in our numerical experiments,

but we cannot guarantee optimality of this parameter value. The stopping criterion for the branch-

and-price method is set to 1,800 seconds. For the metaheuristic, it is set to 360 seconds or 5,000

iterations (whichever comes first) to ensure that the method is suitable for practical applications.

6.1. Instances in numerical test bed

The instances are generated to mimic the operations of a retail grocery warehouse for which we had

detailed data where the target departure times of the outbound trucks determine the staging lane

operations as well as their earliest and latest due times. For all instances, we consider a 24-hour

time horizon and we use minutes as our time unit. The warehouse operates 24 hours a day, and

7 days a week. However, all order picking tasks and shifts of order pickers are disjoint between

different planning horizons as all shifts in a day start and end between 11pm and 11pm the next

day.

Due time windows Two different patterns of due time windows are considered in our instances:

waved and waveless. In waved instances, trucks arrive at the staging lanes at the same time and
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depart from the staging lanes at the same time (i.e., batches to be picked in the same wave have

the same due time windows). Alternatively, in the waveless operations, the arrival and departure

times of trucks at different staging lanes are not related. The deadline for each truck departure

from a staging lane is taken from a uniform distribution in the range of [120,1425] minutes.

To make sure that there is sufficient time for the staging and loading operations of a truck, we

push back deadlines (if needed) to guarantee at least 30 minutes between two consecutive departure

due times of batches destined for the same dock door (or staging lane). The earliest due time of a

batch is set to the latest due time of the previous batches at the same staging lane plus 15 minutes

to ensure that loads of different trucks are not mixed up, and previous trucks have finished loading.

The earliest due time of the first batch that is due at a staging lane is set to 0. The number of

staging lanes in the instances varies from 1 to 8 (see below).

Processing time distributions The processing times of batches are taken either from one

of the following uniform distributions: U[30,60], U[60,90] or U[90,120], or from an exponential

distribution with the same corresponding average (i.e., 45, 75 or 105 minutes, respectively). The

maximum processing time of a batch is restricted to 330 minutes to ensure that employees do not

violate the break constraint (Tbreak = 330 minutes, see below).

Shift types In accordance with Dutch and European working hours laws, the maximum shift

length to employ an order picker (i.e., Tmax) is 540 minutes (or 9 hours), and the maximum time

duration that an employee can work without a break (i.e., Tbreak) is 330 minutes (or 5.5 hours).

The length of the break (i.e., lb) has to be at least 45 consecutive minutes (European Parliament,

Council of the European Union 2003).

We consider six shift structures. In the shift structures SStr1, SStr2 and SStr3, shifts can start

every 8 hours and Tmin equals 8, 6 and 4 hours, respectively. In the shift structures SStr4, SStr5

and SStr6, shifts can start every 4 hours and Tmin equals 8, 6 and 4 hours, respectively. In all shift

structures, a shift can end at the end of any hour after Tmin. Consequently, shift structure SStr1

is the most restrictive and SStr6 is the most flexible. Table 3 summarizes the six shift structures

we consider.

Table 3 Shift structures considered in our numerical experiments

Shift structure Starting hours(S) Tmin (hours)
SStr 1 0, 8, 16 8
SStr 2 0, 8, 16 6
SStr 3 0, 8, 16 4

SStr 4 0, 4, 8, 12, 16, 20 8
SStr 5 0, 4, 8, 12, 16, 20 6
SStr 6 0, 4, 8, 12, 16, 20 4
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Number of batches and staging lanes Each outbound truck requires exactly four order

batches to be picked and the number of trucks departing the warehouse in the planning horizon

equals either 10, 20 and 40 trucks. This results in instances with 40, 80 or 160 batches to be

picked, respectively. The number of staging lanes in an instance is chosen such that the number

of departures per staging lane is fixed at either 5, 10 or 20 trucks. As a result, the number of

staging lanes ranges between 1 and 8 lanes. Note that instances with 10 trucks can only have 5 or

10 departures per staging lane. Furthermore, for instances were the number of trucks equals the

number of truck departures in a staging lane, there is only one staging lane (grouped under waved

in Table 4). We assume that sufficient order pickers are available to schedule with pmax = 100.

6.2. Algorithmic performance

Table 4 presents a summary of the results over all 504 instances in the test bed, whereas the results

for the individual instances are presented in Appendix H. For the branch-and-price algorithm, Root

solved indicates the number of instances for which the column generation was able to solve the

linear relaxation within the run time limit of 1,800 seconds. Optimal solution indicates the number

of instances for which the optimal solution was found within this time limit. For those instances

where the branch-and-price algorithm was not able to find the optimal solution, Optimality gap

% presents the average relative percentage cost difference between the best lower bound found

after branching and the best integer solution found after branching. The average time required

to solve the root node and the overall branch-and-price algorithm is indicated by CPULP and

CPUBP , respectively. Note that CPUBP also includes the time to generate an initial solution. The

average relative performance gap between the solution generated by the savings algorithm and

metaheuristic compared to the best branch-and-price solution is indicated by %∆S and %∆MH ,

respectively1, where a positive number indicates that the branch-and-price algorithm found a better

solution. The average computation time of the savings algorithm and metaheuristic is indicated by

CPUS and CPUMH , respectively.

Table 4 shows that the branch-and-price algorithm is capable of solving reasonable size instances.

However, the size of the instances adversely affects the performance of the exact approach. For the

instances with 40, 80 and 160 batches, the root node can be solved in 100%, 58.9% and 26.3% of

the instances, respectively, and the algorithm converges to an optimal solution within the run time

for 60.2%, 36.1% and 19.4% of the instances, respectively. For the instances where the branch-and-

price algorithm is not able to find an optimal solution, the average optimality gap is only 3.5%.

Figure 5a shows the average optimality gap of the branch-and-price solutions for instances where

we were able to solve the root node but the optimal solutions were not obtained.

1 %∆S = (z(S)−z(BP ))/z(BP )×100 and %∆MH = (z(MH)−z(BP ))/z(BP )×100, where z(BP ), z(S) and z(MH)
denote the objective function value of the best integer solution found by the branch-and-price algorithm, savings
algorithm and metaheuristic, respectively.
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Table 4 Summary of results

Branch-and-Price Algorithm
Savings Meta-

Algorithm heuristic

Dep.
per
lane

Instance
type

Batches Number of instances Average run time

Root Optimal Optimality CPULP CPUBP %∆S CPUS %∆MH CPUMH

solved solution gap % (sec.) (sec.) (sec.) (sec.)
5 Unif- 40 18/18 11/18 4.00 10.5 809.7 11.6 2.5 0.2 48.2

Waved 80 13/18 9/18 1.7 671.7 1,016.1 12.5 8.5 0.0 234.3
160 3/18 1/18 0.6 1,601.5 1,758.4 12.1 33.8 0.7 361.4

Unif- 40 18/18 10/18 5.0 54.9 839.2 17.9 2.3 0.5 110.3
Waveless 80 6/18 3/18 1.1 1,489.8 1,571.5 20.3 7.6 0.2 322.0

160 1/18 0/18 0.8 1,956.9 1,800.0 17.4 26.2 1.9 362.2

Exp- 40 18/18 8/18 3.7 73.7 1,125.7 8.3 2.7 0.0 101.0
Waved 80 4/18 2/18 1.5 1,496.3 1,603.9 10.5 9.0 0.0 302.8

160 0/18 0/18 - 1,788.9 1,800.0 15.0 37.3 0.6 361.5

Exp- 40 18/18 13/18 3.3 76.4 843.1 14.0 2.2 0.7 147.1
Waveless 80 4/18 0/18 1.4 1,637.2 1,800.0 14.7 7.9 -0.3 348.6

160 0/18 0/18 - 1,889.1 1,800.0 12.9 28.3 1.1 363.3

10 Unif- 40 18/18 16/18 2.1 1.7 204.5 12.2 1.8 0.6 30.7
Waved 80 18/18 14/18 1.9 142.2 492.3 14.2 6.7 0.1 103.8

160 14/18 11/18 0.4 507.2 785.1 11.3 26.1 0.2 210.0

Unif- 80 12/18 6/18 2.5 759.8 1,278.9 18.8 6.2 -0.1 239.4
Waveless 160 6/18 5/18 0.3 1,402.5 1,447.3 17.8 21.9 0.3 336.3

Exp- 40 18/18 7/18 5.2 22.3 1,102.7 11.5 1.8 0.1 64.9
Waved 80 12/18 8/18 3.2 758.2 1,030.2 15.0 6.5 0.4 205.0

160 2/18 1/18 0.7 1,654.7 1,702.8 16.4 25.9 0.8 333.4

Exp- 80 8/18 4/18 1.3 1,134.5 1,497.7 17.4 6.0 0.3 272.0
Waveless 160 1/18 0/18 3.6 1,727.7 1,800.0 20.0 21.3 1.2 364.2

20 Unif- 80 17/18 14/18 1.2 108.1 410.0 13.0 4.9 0.0 66.4
Waved 160 14/18 11/18 0.7 486.1 782.6 12.8 18.9 0.0 175.1

Unif- 160 5/18 5/18 - 1,467.0 1,447.9 23.8 17.9 0.6 324.1
Waveless

Exp- 80 12/18 5/18 1.7 671.1 1,316.7 16.5 5.0 0.0 215.0
Waved 160 5/18 3/18 0.3 1,534.9 1,527.3 15.8 19.8 0.6 343.1

Exp- 160 6/18 5/18 2.8 1,476.7 1,417.4 16.4 18.0 0.4 335.8
Waveless

Note: Optimality gap % with ”-” indicates that lower bound is not available for instances with non-optimal solutions for
these set of instances.

When we compare the number of instances for which the root node (i.e., the linear relaxation) is

solved and the number of instances for which an optimal solution is found within the run time limit

of 1,800 seconds, we make the following observations: First, waveless instances are more difficult

to solve than waved instances. A reason why the branch-and-price algorithm can solve waved

instances easier is because the limited extension property (see Proposition 2) exploits the fact

that the batches have non-overlapping due time windows when solving the pricing problem. As a

result, the labeling algorithm does not have to explore as many extensions between nodes, and it is

capable of solving the pricing problem more efficiently for waved instances. Second, instances with
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Figure 5 Performance comparision between solutions found with the branch-and-price algorithm (B&P), savings

algorithm and metaheursitic

exponentially distributed processing times are more difficult to solve than instances with uniformly

distributed processing times. Instances with exponentially distributed processing times have many

batches with short processing times. On average, the number of tasks that can be assigned to an

order picker is higher with the exponentially distributed processing times. As a result, the labeling

algorithm has to consider more potential solutions and labels when solving the pricing problem.

Third, instances with more truck departures per staging lane are easier to solve than instances

with fewer truck departures. When there are more trucks departing from the same staging lane,

the average length of the due time windows is smaller (see Figure 11 in Appendix H). As a result,

the pricing problem needs to consider fewer extensions from any node as many potential solutions

are not feasible. See Appendix H for a more detailed discussion on these observations.

The savings algorithm is able to quickly generate a feasible solution (on average within 4.3

seconds) for either the branch-and-price algorithm or the metaheuristic. However, the quality of

these solutions is poor, with an average cost deviation of 15.0% compared to the best solutions

found with the branch-and-price algorithm. In contrast, the solutions with the metaheuristic have

an average performance gap of less than 0.4% which is found within less than one-fifth of the

computational time required for the branch-and-price algorithm. Figure 5b and 5c present the

performance gap of the heuristic procedures and the computational time for each of the three

solution approaches, respectively.

6.3. Flexible shift structures: A case study

In this subsection, we apply the metaheuristic to the order picker scheduling problem at a warehouse

with perishable products of a Dutch grocery retailer. The case study serves two purposes. First, it

evaluates the usability of the metaheuristic that we propose to solve industrial instances. Second,

the case illustrates some of the ways in which the methodology in this paper can be used to evaluate
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warehouse operating policies of interest to managers. In particular, we study the impact of the

shift structures on the number of order pickers scheduled to perform the order-picking activities.

Description instances The retailer provided operational data regarding the processing times

and due time windows of batches for two weeks of their operations. The first week represents a

typical week in terms of the number of batches to be picked and shipped from the warehouse. The

second week represents the busiest week of the year, which occurs during the Christmas season.

There are 6.9% more batches to be picked in the busier week compared to the typical week (see

Figure 6a, where day 1 is a Sunday). The warehouse has 53 staging lanes, and the number of

trucks departing from the warehouse ranges between 128 and 227 trucks per day (see Figure 6b).

When we consider the number of batches with a due deadline in a particular hour in Figure 6c,

we identify two peak periods of operations: between hour 5 and hour 7, and between hour 10 and

hour 12. In this figure, hour 0 corresponds to 11:00 pm since the warehouse starts its order-picking

activities at that hour. The average processing time of a batch is around 41 minutes for both the

busy and normal week, and the distribution of these processing times are similar in both weeks (see

Figure 7a). The distribution of the duration of the due time windows is illustrated in Figure 7b. The

larger due time windows in the right tail in this figure occur on days with fewer trucks departing

from the warehouse (i.e., on day 1).
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Figure 6 The workload in the case study

Current shift structure The employees are hired to work at the warehouse through third party

agencies. Their shifts can start at hour 0, 8 and 9 (i.e., at 11:00 pm, 7:00 am and 8:00 am). The

flexible workers are allowed to work for at most 9 hours (i.e., Tmax = 9 hours) and are compensated

for at least 6 hours (i.e., Tmin = 6 hours). In contrast to our MILP formulation in Section 3, the

order pickers receive three breaks at fixed times after they start their shift: a 15-minute break after
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Figure 7 Variability in the processing times and durations of due time windows for picking batches

2 hours, a 30-minute break after 3.5 hours and another 15-minute break after 6 hours. This shift

structure is compliant with the EU and Dutch labor laws.

The warehouse manager has to determine the number of order pickers to schedule for each of

the three shift start times, the shift duration of each order picker as well as the batches to be

picked by each order picker. Currently, these decisions are made based on experience and intuition

of warehouse managers. Due to data privacy concerns, the retailer was not willing to share the

actual order picker schedules.

There are four interesting research questions in our case study with the retailer: (i) Can the

metaheuristic that is developed in Section 5 be used in practice as a decision support tool? (ii)

What is the value of flexible break times rather than fixed break times (that are currently used by

the retailer)? (iii) What is the value of an additional shift start time? (iv) Can the retailer leverage

flexible break times and an additional shift start time to offer a larger minimum compensation

Tmin without incurring higher labor costs? Especially the last question is of particular interest to

the retailer since they believe that a larger minimum compensation helps to foster better working

relationships with order pickers and to improve the retention rates of employees.

To answer these questions, we first conducted multiple rounds of consultation with the planners

and managers to develop plausible and actionable scenarios. The scenarios can be distinguished

along three dimensions. First is flexible break times. This means that the breaks for order pickers

are scheduled at the current break start times ± 15 minutes. Second, an additional shift start time

is introduced at hour 4 to account for the workload peak as illustrated in Figure 6c. We have also

tried an additional start time at hour 3 and hour 5, but an additional shift start time at hour

4 resulted in the lowest objective function values. Third, the minimum compensation time can

be increased to 7 hours or even 8 hours instead of 6 hours. Additionally, we introduce two shift
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Table 5 Shift structure scenarios to analyse

Shift Description Flexible Break Times Additional Tmin
Structure Shift Start (hours)
Scenario 1 Current scenario (base case) 6 hours
Scenario 2 Flexible breaks and Tmin = 6 hours X 6
Scenario 3 Flexible breaks and Tmin = 7 hours X 7
Scenario 4 Flexible breaks and Tmin = 8 hours X 8
Scenario 5 Extra shift and Tmin = 6 hours X 6
Scenario 6 Extra shift and Tmin = 7 hours X 7
Scenario 7 Extra shift and Tmin = 8 hours X 8
Scenario 8 Flexible breaks, extra shift and Tmin = 6 hours X X 6
Scenario 9 Flexible breaks, extra shift and Tmin = 7 hours X X 7
Scenario 10 Flexible breaks, extra shift and Tmin = 8 hours X X 8
Scenario 11 Theoretical breaks and Tmin = 6 hours Tbreak = 2 hours, lb = 20 minutes 6
Scenario 12 Theoretical breaks, extra shift and Tmin = 6 hours Tbreak = 2 hours, lb = 20 minutes X 6

structures that are in line with Section 3: a break of 20 minutes needs to be scheduled after at

most 2 hours of work (i.e., Tbreak = 2 hours and lb = 20 minutes). The minimum compensation time

(i.e., Tmin) is still 6 hours. This shift structure is comparable to the current shift structure in the

sense that an employee is compensated for either two or three breaks in any shift, and the values

of Tmin and Tmax are the same. An overview of the 12 different shift structure scenarios is provided

in Table 5. Scenario 1 corresponds to the current shift structure, which serves as benchmark. Since

the shift structure at the retailer is different than discussed in Section 3, we adapted the reduced

problem of the metaheuristic to consider flexible break times (see Appendix I for details).

The overall cost savings as well as the impact on the average number of scheduled order pickers

and on the average shift length are presented in Figure 8a, 8b and 8c, respectively, whereas the

detailed results are presented in Appendix J. By allowing 15 minutes of flexibility in the break

times, the labor cost savings for the retailer are on average 8.8% (comparing scenario 2 to the base

case of scenario 1). In particular, fewer employees have to be scheduled and the average shift length

decreases as well. Example schedules under scenario 1, 2, 5 and 11 are presented in Appendix J.

When the minimum compensation time is increased from 6 hours to 7 or 8 hours (i.e., scenario 3

and 4), the retailer can still expect to have an average cost saving of 5.2% and 0.7%, respectively,

by adopting flexible break times. The number of employees to schedule remains similar in the

scenarios 2, 3 and 4, however, the average shift length increases. Interestingly, the average shift

length in scenario 3 is comparable to scenario 1, i.e., the cost savings of 5.2% in scenario 3 are

mainly due to the scheduling of fewer order pickers. Increasing the minimum compensation time

to 8 hours (in scenario 4) still results in cost savings. This is good news for the retailer, since

the additional cost of an increased value of Tmin is offset against 15 minutes of flexibility in the

break start times. Allowing even more flexibility in scheduling breaks (in scenario 11), the average

labor cost can decrease an additional 1% (the cost savings in scenario 11 is 9.8%, whereas this

is 8.8% in scenario 2). However, this is considered not favorable by the retailer since there is less

overlap between the breaks of employees in scenario 11 (see also Appendix J), which is of social
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importance for the employees. Since the majority of the cost savings in scenario 11 are also captured

by allowing 15 minutes of flexibility in the break times (as in scenario 2), these results provided

sufficient motivation to initiate implementing this 15 minutes of flexibility.
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Figure 8 Performance of the different shift structure scenarios in the case study

The average cost savings of an additional shift start time at hour 4 is less substantial compared

to flexible break times: 4.5% when Tmin equals 6 hours, only 0.6% when Tmin equals 7 hours and an

average cost increase of 4% when Tmin equals 8 hours (for scenario 5, 6 and 7, respectively). This is

mainly because the number of order pickers that need to be scheduled decreases significantly less

compared to flexible break times, whereas the average shift lengths are comparable.

When combining flexible break times and adding a shift start time at hour 4, the average labor

cost can (obviously) decrease even further. What is interesting to observe is that the number of

order pickers that is scheduled is actually decreasing as the minimum compensation time Tmin

increases from 6 to 7 hours and from 7 to 8 hours (comparing scenario 8, 9 and 10). Since the

increase in average shift length is similar as before, the marginal decrease in average cost savings

is less when Tmin increases. The corresponding average cost savings in these scenarios are 11.1%,

9.0% and 5.2%, respectively. Finally, we observe that most of the cost savings of the flexible break

times are captured by the 15-minute flexibility of the break times, since the cost savings in scenario

8 and 12 correspond to 11.1% and 12.5%, respectively (similar when comparing the cost savings

between scenario 2 and 11). This reinforces our previous conclusion that it is sufficient to include

only 15 minutes of flexibility when scheduling the break times.

7. Conclusion

In this paper, we study the order picker scheduling problem where order-picking tasks can be done

flexibly but are constrained with due time windows. The problem intersects with the personnel

scheduling literature. However, unlike the available literature, our problem minimizes the labor
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cost while considering the minimum promised pay to order pickers, the shift start and end times

of employees as well as break times. Therefore, break times are explicitly included as scheduling

variables as well as shift start and end times (with a minimum compensation time for each order

picker). This is a common problem at warehouses with manual order pickers where batches of items

need to be picked and delivered to outbound dock doors (or staging lanes) within the time windows

that the trucks are scheduled to load the items. Since it combines the order picker planning problem

and the shift scheduling problem, we call this the order picker scheduling problem. We present

several formulations of the problem with a range of operational restrictions that are important

to consider. Two methods are presented to solve the problem. First, an exact branch-and-price

algorithm is developed. Since this algorithm can be prohibitive for practical applications, we also

present an efficient metaheuristic that combines a savings algorithm and large neighborhood search.

The results indicate that the heuristic has a stable performance and is capable of producing near-

optimal solutions in a reasonable time for real-life instances.

In a case study, we show how the problem and solution approaches can be used to study different

shift structures. In particular, the results show that the retailer can readily increase the minimum

compensation duration for workers from 6 to 7 or 8 hours and still realize average labor cost savings

of 5.2% or 0.7%, respectively, when a 15 minute flexibility in the scheduling of break times is

implemented. By increasing the minimum compensation duration, order pickers might experience

an improved job satisfaction to promote job retention. More cost savings of around 4-4.5% can be

achieved when an additional shift start time is introduced. Inspired by the result, the retailer under

study has decided to implement additional shifts and flexible breaks. Moreover, the findings are

applicable beyond this grocery retailer as most retailers in Western Europe operate their warehouses

constrained by staging time windows with flexible order pickers in a similar manner.

For the sake of brevity, we only consider identical order pickers in our study. Since the evaluation

of a schedule in both our solution approaches to the problem is on the individual employee, order

picker specific characteristics such as age and seniority-based breaks as well as restricted and pre-

ferred shift starting times can be added to the pricing problem for the branch-and-price algorithm

and the reduced problem for the metaheuristic.

Furthermore, we assumed that shifts and order picking tasks are non-overlapping between dif-

ferent planning horizons (i.e., the shift start and end times of every shift are in the same planning

horizon when batch orders can be picked). If this assumption were to be relaxed, we propose to use

our solution methodology with a rolling horizon. In particular, we suggest to extend the planning

horizon with an additional time period during which no new shifts are allowed to start but employ-

ees who started their shift in the original planning horizon can finish their shift in the extended

time period and perform order picking tasks during that time period. Consequently, order pickers
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can be scheduled more efficiently at the end of the planning horizon and order picking tasks in the

next planning horizon can be performed already. Such a rolling horizon approach results in feasible

solutions that may not be optimal as there may not be sufficient order picking tasks available for

the order pickers that start their shift in the next planning horizon. A shift scheduling problem

that can dynamically include arrivals of new orders in an online environment could be of significant

value for e-commerce companies.

Future research can take two additional trajectories within the offline retail environment. First,

given the size of the instances in real-life business applications, order batching decisions are made

a priori (similar to our approach). It can be worthwhile to jointly consider the order batching and

shift scheduling problem. Second, we assume norm times to perform the order-picking activities in

a deterministic manner. A compelling research direction would be to consider robust order picker

scheduling problems with stochastic processing times of batches. These two research directions can

be of significant value to both academia and practice.
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Appendix A: Illustrative example

Consider the following example that illustrates the importance of shift start, end and break timing decisions

along with assignment and sequencing decisions when orders have due time window constraints.

Example 1. Consider a warehouse that employs flexible order pickers who can work for at most 540

minutes and are guaranteed a minimum payment equal to 330 minutes of work (independent of the amount

of work actually performed). There are 2 possible shift start times: time 0 and time 240 (in minutes). Labor

laws require that employees are given a 45-minute uninterrupted break after 330 minutes of work. There are

three batch of orders to be picked: the first batch has a processing time of 320 minutes and the due time

window is [0,320] in minutes. The second batch has a processing time of 175 minutes and the due time

window is [345,415] in minutes. The third batch has a processing time of 35 minutes and the due time window

is [440,540] in minutes.

The available approach in the order picking literature suggests to implicitly include breaks as “work” that

needs to be scheduled with fixed shift start and end times for all scheduled order pickers. This generic approach

can result in a schedule with two order pickers as shown in Figure 9a. The first order picker picks all three

batches consecutively and then the break is completed by a second order picker since the shift of the first order

picker would violate the maximum shift length otherwise. The resulting shifts satisfy the shift duration limit

as well as the due time windows to pick the batches. However, the first order picker has no scheduled break.

Alternatively, when we assign breaks that comply to the labor laws but we only consider one shift start time,

the order picking plan results in the schedule indicated in Figure 9b. In this schedule, the second order picker

has to wait 170 minutes until she can start to pick items towards batch 2 because of the fixed shift start times.

This schedule corresponds to 785 minutes of compensation for the scheduled order pickers. Finally, when we

consider multiple shift start times, the shift of the second order picker can start at time 240, and she can

immediately start to pick items for batch 2. See Figure 9c. This optimal schedule corresponds to 660 minutes

of compensation for the scheduled order pickers. The distinction between these three examples clearly indicate

the need to explicitly consider shift scheduling decisions in order picker planning problems.

Order 1 Order 2 Order 3

0 320 495 530

Break

0 45

(a) Schedule with implicit
breaks and fixed shift start and
end times

Order 1 Break Order 3

0 320 365 405 440

2

170 345

(b) Schedule with explicit
breaks and flexible shift end
times

Order 1

0 320

Order 2 Order 3

240 415 450

(c) Schedule with explicit
breaks and flexible start and
end times

Figure 9 Illustration of the importance of scheduling breaks and shifts in manual order picking operations with

temporal constraints. The duration between the dotted lines represents the time interval for which the

order picker is compensated.
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Appendix B: Additional constraints to OPSP formulation

The formulation of our OPSP in Section 3 suffers from symmetry. This means that interchanging an entire

schedule of batches and breaks between different order pickers leaves the objective function unchanged. This

issue can be partially addressed with the use of lexicographic ordering constraints (Sherali and Smith 2001,

Jans 2009). Constraints (34) impose a hierarchy between order pickers who are scheduled to work and those

who are not. In particular, order pickers are scheduled sequentially based on the start time of their shift (i.e.,

the start time of order picker 1 cannot exceed the start time of order picker 2, etc.).

∑
j∈S

jsjp−1 ≤
∑
j∈S

jsjp ∀p∈ P \ {1} (34)

The second set of additional constraints provides a lower bound on the number of order pickers that should

be scheduled to work between time periods j and j′, where j′ > j. Constraints (35) specify that the number

of time periods during which an order picker needs to be scheduled to perform an order picking task between

the two period j and j′ needs to at least the minimum workload that needs to be executed during those time

periods to ensure that all batches are picked within their due time windows.

∑
p∈P

 j′∑
j̄=1

(j′− (max{j̄, j}− 1))sj̄p−
j′∑
j̄=1

(j′−max{j̄, j− 1})ej̄p



≥

∑
i∈I

(
ti−max

{
(di− j′ · l)+

+ ((j− 1) · l− (di− ti))+
,1{ri≤j′·l} ·

(
(j− 1) · l− (ri− ti)+

)+
})+

l
∀j < j′, j ∈ J, j′ ∈ J

(35)

where (A)+ = max{A,0} and 1{condition} is an indicator function which has the value 1 if the condition is

true and 0 otherwise. The left-hand side of this constraint is the summation of all periods that order pickers

are scheduled to work during the time interval from period j until period j′. The first summation equals all

time periods from period max{j̄, j} until period j′, where j̄ ≤ j′ is the starting period of the shift for order

picker p. However, the time periods after the shift ends until period j′ need to be subtracted. Note that both

summations are zero if the start time of a shift exceeds period j′, both summations are equal if the start and

end time of a shift preceeds period j, and the second summation is zero if the end time of a shift exceeds

period j′. The term in between the brackets of the numerator of the right-hand side represents the minimum

amount of execution time in the time interval from period j until period j′ to pick the items of batch i.

Note that period j starts at time (j − 1) · l and period j′ ends at time j′ · l. Consequently, the first term of

the maximization is the maximum amount of time that batch i can be executed after period j′ while still

respecting the latest due time di and the second term is the maximum amount of time that batch i can be

executed before period j while still respecting the earliest due time ri. Subtracting this from the execution

time ti leaves the minimum amount of time units associated with the order picking task of batch i during

the time periods j and j′. Consequently, the numerator in constraints (35) is equal to the minimum amount

of time units that order pickers need to be scheduled during the time interval from period j until period j′

to execute the batches i∈ I. Since the denominator is the length of one time period, the ratio represents the
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minimum amount of time periods for which order pickers need to be scheduled to work between time period

j and j′ > j.

The final additional constraint is a lower bound on the objective function value in our OPSP formulation.

This requires us to determine the minimum number of time units that order pickers need to be scheduled

to perform
∑

i∈I ti time units of order picking tasks. For simplicity we assume that all order pickers have

the same shift length, which is indicated by ls time units. The scheduled time in each shift is assigned for

order picking tasks and for breaks. To better understand the dynamics of order picking time and breaks

during a shift, consider the following example: ls = 7.5, Tbreak = 3 and lb = 1. This means that the employee

is scheduled for 6 time units to pick orders and 1.5 time units to take a break. However, when ls changes

to 4.5 time units, then the employee is scheduled for 3.5 time units to pick orders and 1 time unit to take

a break. The following expression can be used to determine the number of time units that an employee is

picking orders as a function of the shift length:

Twork(ls) =

ls−
⌊

ls
Tbreak+lb

⌋
· lb, if ls−

⌊
ls

Tbreak+lb

⌋
· (Tbreak + lb)≤ Tbreak

Tbreak ·
(⌊

ls
Tbreak+lb

⌋
+ 1
)
, otherwise

(36)

In the first condition, the shift stops while performing an order picking task and it stops while taking

a break in the second condition. The minimum number of employees to cover
∑

i∈I ti time units of order

picking tasks equals

N(ls) =

⌈ ∑
i∈I ti

Twork(ls)

⌉
(37)

The first N(ls)− 1 order pickers are scheduled to perform order picking tasks for Twork(ls) time units and

the additional worker only needs to be scheduled to cover the remaining work, which equals

∆(ls) =
∑
i∈I

ti− (N(ls)− 1) ·Twork(ls). (38)

If ∆(ls)< Tmin, it can happen that it is not justifiable to assign this work to an N -th order picker since

she has to be compensated for Tmin time units. Instead it would be better to assign this work to the previous

N −1 order pickers by extending their shift length. The computations for this analysis depend on the actual

shift length ls, which we discuss first.

The question is what the best duration of the shift (i.e., ls) needs to be such that the compensation for

the scheduled order pickers is minimized. Note that it is most efficient to have a shift without a break. In

that case, the productivity of the employee is 100% since a break is non-productive time that is scheduled.

However, Tmin can prevent a shift length of Tbreak time periods. Therefore, it is best to start with Tbreak

time units of work and then add the minimum number of blocks of lb +Tbreak time units such that the total

shift length equals or exceeds Tmin time units for the first time. Consequently, the shift length cannot be

extended without scheduling a break first. This corresponds to the following shift length:

l(1)
s = min

{
Tbreak +

⌈
(Tmin−Tbreak)+

lb +Tbreak

⌉
(lb +Tbreak) , Tmax

}
(39)

When N(l(1)
s )− 1 order pickers are scheduled with a shift length of l(1)

s time units, we can analyze how to

add the additional ∆(l(1)
s ) time units to the schedule (as introduced above). If they are assigned to an N -th
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order picker, we need to make sure that this order picker is scheduled at least Tmin time units. Alternatively,

the additional ∆(l(1)
s ) time units can be added to the shifts of the other N − 1 order pickers. However, this

would require assigning a break to these employees first. Therefore, the time units that need to be scheduled

to cover the additional ∆(l(1)
s ) time units of order picking tasks equals

l
(1)
s′ = min

{
max

{
∆(l(1)

s ) +

(⌈
∆(l(1)

s )

Tbreak

⌉
− 1

)
· lb, Tmin

}
,∆(l(1)

s ) +

⌈
∆(l(1)

s )

Tbreak

⌉
· lb
}

(40)

Consequently, the minimum total number of time units that the order pickers need to be scheduled is

given by LB(1) = (N(l(1)
s )− 1) · l(1)

s + l
(1)
s′ .

There can be one exceptional scenario. If the shift with a duration of Tmin time units ends while taking a

break (i.e., the condition in Equation (36) is not satisfied when ls = Tmin), then we also need to analyze shift

lengths of l(2)
s = Tmin time units. This means that it can happen that it is better to compensate order pickers

for a partial break at the end of their shift instead of adding an entire block of lb +Tbreak time units to the

shift length. Assigning the additional ∆(l(2)
s ) time units to the N(l(2)

s )− 1 order pickers who are already

scheduled is more complex than the previous scenario, since the order pickers with a shift length of Tmin

time units end their shift while taking a break. It requires d∆(l(2)
s )/Tbreake order pickers to extend their shift

with the additional break time of l′b time units, where

l′b = lb−
(
Tmin−

⌊
Tmin

Tbreak + lb

⌋
· (Tbreak + lb)−Tbreak

)
(41)

Therefore, the time units that need to be scheduled to cover the additional ∆(l(2)
s ) time units of order picking

tasks equals

l
(2)
s′ = min

{
Tmin,∆(l(2)

s ) +

⌈
∆(l(2)

s )

Tbreak

⌉
· l′b
}

(42)

The corresponding minimum total number of time units that the order pickers need to be scheduled in

this second scenario is given by LB(2) = (N(l(2)
s )− 1) · l(2)

s + l
(2)
s′ .

The smallest value of LB(1) and LB(2) should be added as lower bound on the objective function. However,

since order pickers are paid (or compensated) in integral multiples of the period length l, we include the

following lower bound, LB, to the original problem formulation∑
p∈P

mp ≥LB =

{
l ·
⌈
LB(1)/l

⌉
, if Tmin−

⌊
Tmin

Tbreak+lb

⌋
· (Tbreak + lb)≤ Tbreak

l ·
⌈
min{LB(1),LB(2)}/l

⌉
, otherwise

(43)

Appendix C: Network flow formulation

Consider a graph G = (V,A), where V is the set of nodes and A is the set of arcs. Next, we introduce O

and D as dummy source and sink nodes, respectively. The start and end times of shifts are also indicated

by dummy nodes and denoted by S and E, respectively. Each batch in I is also a node. Consequently,

V := {o} ∪ {d} ∪ I ∪ S ∪E. Let ri := 0 and di := Tday for i ∈ {o,d}, whereas ri anddi present the start time

of a shift for the nodes i ∈ S and they present the end time of a shift for the nodes i ∈ E. The processing

times ti for the nodes i∈ V \ I are equal to zero. An example of the network graph is presented in Figure 10.

In this network flow structure, traversing the graph is analogous to starting the shift at the time associated

with node i∈ S, executing the order picking tasks of the batches associated with nodes i∈ I, and ending the

shift at the time associated with node i∈E.
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o
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S I E

Figure 10 A representation of a network graph with three shift start and end times and three batches

The same input parameters are used as summarized in Table 2, whereas the following decision variables

are used in the network flow formulation:

xpij is 1 if node i∈ V is visited before node j ∈ V by order picker p∈ P , else 0
ypi is 1 if order picker p∈ P takes a break before visiting node i∈ I, else 0
cpi completion time at node i∈N by order picker p∈ P
bpi number of time units without a break before completing the processing time ti at node i∈ V

by order picker p∈ P
mp amount of time for which order picker p∈ P is compensated

The order picker scheduling problem (OPSP) is formulated as a network flow problem as follows:

min
∑
p∈P

mp (44)

subject to ∑
j∈S

xpoj ≤ 1 ∀p∈ P (45)∑
i∈E

xpid ≤ 1 ∀p∈ P (46)∑
p∈P

∑
i∈I∪S

xpij = 1 ∀j ∈ I (47)∑
p∈P

∑
j∈I∪E

xpij = 1 ∀i∈ I (48)∑
j∈V

xpij =
∑
j∈V

xpji ∀i∈ V \ {o,d}, p∈ P (49)

cpj ≥ cpi + tj + lby
p
j − (1−xpij)M ∀i∈ V, j ∈ V,p∈ P (50)

cpi ≥ ri− (1−
∑
j∈N

xpij)M ∀i∈ V,p∈ P (51)

cpi ≤ di + (1−
∑
j∈N

xpij)M ∀i∈ V,p∈ P (52)

bpj ≥ tj − (1−xpij)M ∀i∈ S, j ∈ I, p∈ P (53)

bpj ≥ bpi + (cpj − cpi )− (1−xpij + ypj )M ∀i∈ I, j ∈ I, p∈ P (54)

bpi ≥ ti− (1− ypi )M ∀i∈ I, p∈ P (55)

bpi ≤ Tbreak ∀i∈ I, p∈ P (56)
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∑
i∈I∪S

xpij ≥ ypj ∀j ∈ I, p∈ P (57)

Tmin
∑
j∈S

xpoj ≤mp ∀p∈ P (58)

cpj − cpi ≤mp ∀i∈ S, j ∈E,p∈ P (59)∑
p∈P

∑
j∈S

xpoj ≤ pmax (60)

∑
p∈P

 ∑
j∈V \S

xpoj +
∑
i∈S

∑
j∈V \I

xpij+∑
i∈I

∑
j∈V \(I∪E)

xpij +
∑
i∈E

∑
j∈V \{d}

xpij+

∑
j∈V

xpdj

)= 0 (61)

bpi , c
p
i ≥ 0 ∀i∈ V,p∈ P (62)

xpij ∈ {0,1} ∀i∈ V, j ∈ V,p∈ P (63)

ypi ∈ {0,1} ∀i∈ I, p∈ P (64)

0≤mp ≤ Tmax ∀p∈ P (65)

The objective function is the same as the model formulation described in Section 3. Constraints (45) and

(46) allow for an order picker to start and end her shift at most once. Constraints (47) and (48) ensure that

each batch node is visited (i.e., executed) exactly once. Constraints (49) are flow conservation constraints

for all nodes in S, I and E.

Constraints (50) determine the completion times at all nodes. Constraints (51) and (52) prevent earliness

and tardiness, respectively, at the corresponding nodes. Constraints (53) and (54) determine the duration at

nodes since the last break (including the processing times at the nodes). Constraints (55) reset the duration

since the last break if a break is scheduled before visiting node i. Constraints (56) ensure that an order

picker cannot be scheduled to visit nodes consecutively for more than Tbreak time units without a break.

Constraints (57) make sure that a break before visiting node j can only be assigned to the same order picker

who actually visits that node.

Constraints (58) ensure that an order picker is compensated for at least Tmin time units if she is scheduled

to work. Constraints (59) track the number of time units that an order picker is scheduled to work from the

start of the shift to the end of the shift. Constraints (60) restrict the maximum number of order pickers that

can be scheduled (i.e., paths that can be visited in the graph).

Constraints (61) ensure that the paths in the network can only traverse through the nodes of the graph

that are allowed by restricting the flow on the arcs that are not allowed to be zero. Constraints (62) to (65)

define the domain and range of the decision variables.
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C.1. Additional constraints

The symmetry breaking constraints and additional constraints to tighten the model formulation from

Appendix B can easily be translated to the network flow formulation. For instance, the equivalent of con-

straints (34) is ∑
j∈S

jxojp−1 ≤
∑
j∈S

jxojp ∀p∈ P \ {1} (66)

Constraints (35) can be transformed similarly and constraints (43) can directly be included without any

modifications.

Appendix D: Extensions to OPSP formulation

A generic formulation of the OPSP and corresponding reduced problem is presented in Section 3 and

Appendix G, respectively. However, there can be additional or different constraints for individual ware-

houses. In this appendix, we discuss and model full time employees as well as common break and labor law

requirements that can easily be included to the original problem formulation.

Warehouses can have numerous restrictions pertaining the use of human labor dependent on specific labor

laws. The European Union stipulates that all employees working more than 6 hours in a shift must be given

a break, but the length of the break is specified by individual countries (European Parliament, Council of

the European Union 2003). For example, the Dutch “Working Hours Act” mandates that each employee

who works 5.5 hours must be given a break of 30 minutes, which could be reduced to 15 minutes conditional

on agreements between the employer and labor unions2 (Ministry of Social Affairs and Employment 2010).

There can also be differences between companies within the same country or region, based on labor union

agreements and company cultures regarding working time, start times and break times.

In the United States, the Fair Labor Standards Act (FLSA) does not require to give employees a rest or

meal break. However, individual states can carry break laws in their legislature. Common constructs include

a 10-15 minute rest break for every 3.5 or 4 hours worked, and an uninterrupted meal break of 30 minutes

for employees who work more than five hours in a day. Such meal breaks must usually be provided sometime

after the first two hours of work and before the last two hours of work. In Japan, the labor laws dictate that

employees are entitled to a break of at least 45 minutes when they work six to eight hours and to a break

of at least one hour when the working hours exceed eight hours. According to the Employment Standards

Act in Canada, employees are entitled to at least 30 consecutive minutes of break during every 5-hour work

period. The Employment Relations Act in New Zealand prescribes a 30-minute meal break and multiple

10-minute rest breaks based on the number of hours worked. Even though the Fair Work Act in Australia

does not provide a statutory entitlement to any work breaks, the Fair Work Ombudsman prescribes similar

rules as New Zealand.

The Fair Labor Standards Act (FLSA) in the United States does not address flexible work schedules. Alter-

native work arrangements such as flexible work schedules are a matter of agreement between the employer

and the employee. This seems to be the standard in many countries. However, there are labour laws that spec-

ify a minimum compensation duration. For instance, employees in the United States, Canada and Australia

must be paid for at least 3 hours each time they are required to report to work.

2 A working day cannot exceed 11 hours and if a shift is longer than 10 hours, the total break time has to be at least
45 minutes. The overall break time can be split in multiple breaks, but need to be at least 15 consecutive minutes.
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D.1. Full time employees

In our original problem formulation, we assume that all employees are flexible and part-time workers. How-

ever, if there are full-time employees with a fixed contract, the problem formulation can easily be extended

to accommodate these circumstances. Consider the set of employees P , where the first p employees are full-

timers and the remaining pmax − p employees are part-timers. If the shift start and end times are included

in an employee’s contract, this means that sjp and ejp for p= 1, . . . , p are predetermined values rather than

decision variables. If only the shift length is included in the contract (let us denote this by ls, which is not

necessarily equal to Tmax), then the duration between the start and end of the shift cannot exceed this:(∑
j∈E

jejp−
∑
j∈S

(j− 1)sjp
)
l≤ ls, ∀p∈ {1, . . . , p} (67)

However, full-time workers have a fixed compensation specified in their contractual agreements. Therefore,

the values of mp for p= 1, . . . , p are predetermined regardless of the tasks assigned to them.

Furthermore, there are often labor union agreements stipulating a maximum number of flexible employees

that can be employed compared to the full-time employees (Bard et al. 2007). For instance, if there is a

maximum ratio γ between the number of flexible order pickers divided by the number of full-time order

pickers, then pmax is restricted:

pmax− p
p

≤ γ ⇐⇒ pmax ≤ (γ+ 1)p. (68)

D.2. Maximum number of order pickers per time period

The total number of order pickers that are scheduled to work at the same time period can be restricted, for

instance if equipment has a limited availability (such as pick trucks in a warehouse). This can be included

in the original problem formulation by adding the following constraints:

j∑
j′=1

∑
p∈P

(sj′p− ej′−1,p)≤ peqp ∀j ∈ J (69)

where e0,p = 0.

D.3. Designated break times and break time windows

In the original problem formulation, it is assumed that each order picker can take a break at any time.

However, break times can be restricted to certain hours in the day because of opening times of cafeterias or

labor union agreements. Kniffin et al. (2015) observe that commensality (i.e., eating together) is positively

correlated to the performance of employees, and it may offer the only valuable and rare occasion for employees

to socialize. Therefore, consider a set of periods J ′ ⊆ J at which employees are allowed to take a break. The

decision variables ykp also need to include the time period. Define yjkp as a binary decision variable that has

the value 1 if a break is scheduled at the start of period j ∈ J ′ which is the k-th position in the shift for

order picker p ∈ P and 0 otherwise. The following constraints make sure that ckp = (j − 1) · l+ lb if yjkp = 1

for j ∈ J ′ and ckp is unconstrained otherwise:

ckp +M · (1− yjkp)≥ (j− 1) · l+ lb ∀j ∈ J ′, k ∈K,p∈ P (70)

ckp−M · (1− yjkp)≤ (j− 1) · l+ lb ∀j ∈ J ′, k ∈K,p∈ P (71)
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Note that ykp needs to be replaced by
∑
j∈J′

yjkp in the original problem formulation.

More general, a break can also be restricted to start within a time window rather than to the beginning

of a time period. Consequently, define J ′ as the set of break time windows over the planning horizon and

[rbreakj , dbreakj ] as the start and end time of break window j ∈ J ′. The decision variables yjkp have a similar

interpretation as before, except that it refers to a break in the j-th break time window (not the start of a

time period). The following constraints make sure that the break starts and finishes within the associated

break time window if yjkp = 1 for j ∈ J ′ and ckp is unconstrained otherwise:

ckp +M(1− yjkp)≥ rbreakj + lb ∀j ∈ J ′, k ∈K,p∈ P (72)

ckp−M(1− yjkp)≤ dbreakj ∀j ∈ J ′, k ∈K,p∈ P (73)

D.4. Multiple types of breaks

Company culture and contractual agreements can require to give order pickers multiple types of breaks. For

instance, several short breaks of up to 15 minutes are given during a shift in addition to a lunch break of 30

minutes. Let Φ indicate the set of various types of breaks. For each break type φ∈Φ, denote the maximum

amount of time an order picker can work without a break of type φ by T φbreak, and the length of a break of

type φ by lφb . We should note that breaks often have a hierarchy between them, i.e., a break can reset the

working time accumulated for a different type of break. For example, employees are given a coffee break of

15 minutes after 3 hours of work and a lunch break of 30 minutes after 5 hours of work. The lunch break

will reset the working time accumulated for the coffee break but not the other way around. Let Φφ denote

the set of breaks that reset the accumulated working time for break type φ ∈ Φ. To continue the example,

the coffee break is type 1 and the lunch break is type 2. Consequently, Φ = {1,2}, T 1
break = {3}, T 2

break = {5},

Φ1 = {2} and Φ2 =∅.

We introduce a set of binary decision variables yφkp that indicate if the break of type φ is scheduled at

the k-th position in the shift for order picker p ∈ P and 0 otherwise. The following constraints include the

hierarchy as discussed earlier:

ckp−

(
chp−

∑
i∈I

tixihp

)
≤ T φbreak +M

 ∑
φ′∈Φφ

k∑
k′=h+1

yφ
′

k′p

 ∀k ∈K,h< k,p∈ P,φ∈Φ (74)

Furthermore, ykp needs to be replaced by
∑
φ∈Φ

yφkp and lbykp by
∑
φ∈Φ

yφkpl
φ
b in the original problem formulation.
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Appendix E: Pseudocode of Labeling Algorithm

Algorithm 1 Dynamic programming algorithm for the pricing problem

1: Li := {(i, Tmin +ψ,Ti, (V
1
h = 0, . . . , V

|V ′|
h = 0))} i∈ S . Initialization at shift start nodes

2: for i∈ V ′ \S do

3: Li := ∅ . Initialization at remaining nodes

4: ∆ := S . Unvisited vertices

5: while ∆ 6= ∅ do

6: for i∈∆ do

7: for j ∈ δ(i) do . Feasible nodes only

8: for Lih ∈Li do

9: if V j

Li
h

= 0 then . If j is not already visited

10: Tj := f(Ti, j) . Extension without break

11: if Tj is feasible then

12: ADD Ljh = (j, cjh, Tj, Vh) to Lj

13: Tj := g(Ti, j) . Extension with break

14: if Tj is feasible then

15: ADD Ljh = (j, cjh, Tj, Vh) to Lj

16: if Lj changed then

17: Lj←DOMINANCE(Lj) . Eliminate dominated lables

18: ∆←∆∪{j}

19: ∆←∆ \ {i}

20: return arg minL∈LD
{cDL }

Appendix F: Proof of Proposition 2

Let x∗ indicate a sequence of batches with cost z(x∗) assigned to an order picker in the optimal solution

where batch i precedes batch j. The completion times for batch i and batch j in x∗ are presented by c∗i and

c∗j , respectively. Furthermore, let γ∗i be the earliest time the order picker can start picking items for batch i

such that the sequence x∗ remains optimal and q∗j is the latest time the order picker can start to work on

the batch succeeding batch j such that the sequence x∗ remains optimal.

When the performance of the batches i and j is reversed, the new sequence is indicated by x′ with cost

z(x′) and the completion times of the batches i and j become c′i and c′j , respectively. To proof Proposition 2,

it is sufficient to show that the new solution is feasible and the cost z(x′) equals z(x∗). There are four possible

sequences to consider in regard to scheduling breaks before performing batch i and batch j.
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Case I: batch i and j are performed without a break before i or between i and j (i.e., i|j)

Sub-case (i): γ∗i + ti < ri = c∗i and γ∗i + ti + tj < c
∗
j ≤ q∗j (i.e., there is a wait between γ∗i and c∗i )

In the new solution x′, the order picker might need to wait before the completion of batch j. If the order

picker needs to wait, γ∗i + tj < rj = c′j and γ∗i + tj + ti < c′i ≤ q∗j . If the order picker does not need to wait,

γ∗i + tj ≥ ri = c′j and γ∗i + tj + ti = c′i ≤ q∗j . In either case, q∗j is not violated and the new sequence is feasible

with the same cost.

Sub-case (ii): γ∗i + ti = c∗i ≥ ri and γ∗i + ti + tj = c∗j ≤ q∗j (i.e., there is no wait between γ∗i and c∗i )

When the batches are reversed, there would still be no waiting time as tj > ti. Consequently, γ∗i + tj = c′j > ri

and γ∗i + tj + ti = c′i ≤ q∗j . Furthermore, q∗j is respected with the reversal of the batches. Consequently,

z(x′) = z(x∗).

Case II: batch i and j are performed with a break before i but not between i and j (i.e., y|i|j)

Sub-case (i): γ∗i + lb + ti < ri = c∗i and γ∗i + lb + ti + tj < c
∗
j ≤ q∗j (i.e., there is a wait between γ∗i and c∗i )

If there is a wait in the new solution x′, then γ∗i + lb + tj < rj = c′j and γ∗i + lb + tj + ti < c
′
i ≤ q∗j . If the order

picker does not need to wait, then γ∗i + lb + tj ≥ ri = c′j and γ∗i + lb + tj + ti = c′i ≤ q∗j . In either case, q∗j is

not violated, and the new sequence is feasible with the same cost. Furthermore, the amount of work done

between the end of the break and the completion of batch i does not increase.

Sub-case (ii): γ∗i + lb + ti ≥ ri = c∗i and γ∗i + lb + ti + tj = c∗j ≤ q∗j (i.e., there is no wait between γ∗i and c∗i )

The reversal of the batches i and j does not introduce any waiting time for the order picker. Furthermore,

the amount of time since the break remains the same.

Case III: batch i and j are performed without a break before i but between i and j (i.e.,

i|y|j) Let the amount of work since the last break or since the start when the first batch is picked until

the beginning when batch i is picked be denoted by br. If the sequence in which the batches i and j are

performed is reversed, it is possible that br + tj > Tbreak, which results in an infeasible solution. Therefore,

batch j can not always precede batch i in this case.

Case IV: batch i and j are performed with a break before i and between i and j (i.e., y|i|y|j)

The same proof as Case I can be used, where the new value of ti is increased by lb and the new value of tj

by lb.

Appendix G: Optimal schedule for one order picker

In the savings algorithm in Section 5.1 and the large neighborhood search in Section 5.2, the assignment

of batches to an order picker is altered. In this appendix, we present an MILP formulation to optimally

schedule the batches to an individual order picker such that the due time windows and break constraints are

satisfied. Before we try to solve the reduced OPSP formulation with one order picker, we perform a set of

infeasibility checks to verify whether a feasible solution can be found.

G.1. Infeasibility conditions

Even though the computation time of the MILP for the reduced problem is short, infeasibility checks can be

performed first as pre-processing step to easily verify whether the order picking tasks cannot be combined

in a feasible schedule. Let the set of batches to be included in the schedule be denoted by B ⊆ I. If any of
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the following infeasibility conditions is satisfied, the reduced problem is infeasible. The complexity of these

checks are indicated within parentheses.

•
∑
i∈B

ti +
(⌈

(
∑
i∈B

ti)/Tbreak

⌉
− 1
)
lb > Tmax, (complexity: O(|B|)), the total processing time of the batches

and the necessary break times exceeds the maximum shift length.

• maxi∈B{ri}−mini∈B{di− ti}>Tmax, (complexity: O(|B|)), the time difference between the latest earli-

est completion time and the earliest latest start time exceeds the maximum shift length (i.e., there are tasks

that cannot be scheduled to be completed earlier or to start later such that the maximum shift length is not

exceeded).

• |B| +
(⌈

(
∑
i∈B

ti)/Tbreak

⌉
− 1
)
> k̄, (complexity: O(|B|)), the minimum number of tasks (either order

picking batches or breaks) to cover the workload in B exceeds the maximum number of tasks in a shift.

• (
∑
i∈B

ti)>maxi∈B{di}− (mini∈B{ri− ti})+, (complexity: O(|B|)), the total processing time of all batches

in B cannot be assigned to one order picker between the earliest start time and the latest completion time.

• ∃i, j ∈B : (ri + tj >dj)∧ (rj + ti >di), (complexity: O(|B|2)), the due time windows prohibit the order

picker to perform batch j after i or to perform batch i after j (i.e., the due time windows are violated if

both tasks need to be performed by the same order picker).

• Define the earliest start time of task i ∈ B as γi := ri − ti. Let ΓB and DB denote the earliest start

times and latest completion times of the batches in B, respectively. For any earliest start time γ ∈ ΓB and

latest completion time d ∈DB where γ < d, the set Iγd represents all batches in B that need to start at or

after time γ and be completed at time d at the latest, i.e., Iγd := {i ∈B|(γi ≥ γ)∧ (di ≤ d)}. The condition

∃γ ∈ ΓB, d∈DB :
∑
i∈Iγd

ti > (d−γ) indicates that the work load between γ and d cannot be completed by one

order picker (complexity: O(|B|3)).

G.2. Reduced OPSP formulation with one order picker

When none of the infeasibility conditions are satisfied, we try to optimally sequence the tasks to the individual

order picker while satisfying all constraints. This means that the original OPSP formulation of Section 3

is simplified by removing the multiple order pickers p ∈ P . Consequently, the set of batches that need to

be scheduled for the single order picker is denoted by B and the decision variables in this reduced problem

become the following:

xik is 1 if batch i ∈ B is scheduled to be picked at the kth position in the shift for the order
picker, where k ∈K, else 0

yk is 1 if a break is scheduled at the kth position in the shift for the order picker, where k ∈K,
else 0

sj is 1 if the order picker starts the shift at the beginning of period j ∈ S, else 0
ej is 1 if the order picker ends the shift at the end of period j ∈E, else 0
ck completion time of the task scheduled at the kth position in the shift of the order picker,

where k ∈K
m amount of time for which the order picker is compensated

The reduced problem (RP) of the OPSP is formulated as a MILP model as follows:

RP:

minm (75)



13

subject to ∑
i∈B

xik + yk ≤ 1 ∀k ∈K (76)∑
k∈K

xik = 1 ∀i∈B (77)∑
j∈J\S

sj +
∑
j∈J\E

ej = 0 (78)

c1 ≥
(∑
j∈S

(j− 1)sj

)
l+
∑
i∈B

tixi1 + lby1 (79)

ck ≥ ck−1 +
∑
i∈B

tixik + lbyk ∀k ∈K \ {1} (80)∑
j∈E

(jej)l≥ ck̄ (81)

ck +M(1−xik)≥ ri ∀i∈B,k ∈K (82)

ck−M(1−xik)≤ di ∀i∈B,k ∈K (83)

ck−
(
ch−

∑
i∈B

tixih

)
≤ Tbreak +M

( k∑
k′=h+1

yk′
)

∀h,k ∈K,h< k (84)∑
i∈B

xik−1 + yjk−1 ≥
∑
i∈B

xik + yjk ∀k ∈K \ {1} (85)

(
∑
j∈E

jej −
∑
j∈S

(j− 1)sj)l≤m (86)

ck ≥ 0 ∀k ∈K (87)

xik ∈ {0,1} ∀i∈B,k ∈K (88)

yk ∈ {0,1} ∀k ∈K (89)

sj , ej ∈ {0,1} ∀j ∈ J (90)

max

{
Tmin,

⌈(∑
i∈B

ti +
(⌈

(
∑
i∈B

ti)/Tbreak

⌉
− 1
)
lb

)
/l

⌉
l

}
≤m≤ Tmax (91)

There is a one-to-one relation with the constraints in this RP formulation and the OPSP formulation in

Section 3.

This reduced problem is strongly NP-hard as it is a generalization of the minimum tour duration prob-

lem (MTDP), which is known to be strongly NP-hard (Tilk and Irnich 2017). However, we can use the

overall architecture of the solution approaches for the MTDP to efficiently solve the MILP since the archi-

tecture allows us to incorporate our additional operational constraints. Furthermore, the scale of the reduced

problem as a subroutine of the savings algorithm and the LNS is small enough to be practically solvable.

The abovementioned infeasibility tests also limit the number of times that the reduced problem is solved

unnecessarily.

Appendix H: Detailed result of Section 6.2

Table 6 until 13 provide the results of all individual numeral instances that are summarized in Table 4. For

the branch-and-price algorithm, we report the optimal solution and best integer solution found by column
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generation at the root node (this corresponds to lower bound LBLP and upper bound UBLP , respectively) as

well as the best lower bound from branching and the best integer solution after branching (denoted by LBIP

and UBIP , respectively). The computational time to solve the root node, perform branching and perform

the overall branch-and-price algorithm is indicated by CPULP , CPU IP and CPUBP , respectively (all in

seconds). The relative cost increase of the solutions found by the savings algorithm, commercial solver Gurobi

Optimizer and the metaheuristic compared to performance of the branch-and-price algorithm is indicated by

%∆S, %∆GUR and %∆MH , respectively, where %∆X = (z(X)− z(BP ))/z(BP )× 100 and z(X) is the best

integer solution found by solution procedure X. The computational time to perform solution procedure X

is provided by CPUX (in seconds) for solution procedure X. Note that we terminate the solution procedure

when the computational time reaches 1,800 seconds.

As discussed in Section 6.2, the performance of the branch-and-price algorithm depends on the truck

departure pattern (waved or waveless), processing time distribution (uniform or exponential), and number

of truck departures per staging lane. Figure 11a shows that waved instances are more difficult to solve than

waveless instances. Figure 11b shows that instances with exponentially distributed processing times are more

difficult to solve than when the processing times have a uniform distribution. Finally, Figure 11c shows that

instances with more truck departures per staging lane are easier to solve than instances with less truck

departures per staging lane.
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Figure 11 Relative number of instances for which either the root node is solved or the optimal solution is found

with the branch-and-price algorithm
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Table 6 Results for Instances with 40 batches, 5 truck departures per staging lane

Branch & Price S GUR MH

Linear Relaxation Integer

Instance LBLP UBLP CPULP LBIP UBIP CPUIPCPUBP%∆S CPUS%∆GUR CPUGUR%∆MH CPUMH

U-Waved-40-45-SSTR1 4480.0 4800.0 1.5 4500.0 4800.0 1796.6 1800.0 0.0 1.9 0.0 1800.0 0.0 47.6
U-Waved-40-45-SSTR2 4200.0 4440.0 1.4 4260.0 4440.0 1795.1 1800.0 8.1 3.5 0.0 1800.0 -1.4 49.8
U-Waved-40-45-SSTR3 4152.0 4200.0 0.9 4200.0 4200.0 2.8 6.4 2.9 2.8 0.0 1800.0 0.0 44.8
U-Waved-40-45-SSTR4 4480.0 4800.0 5.2 4500.0 4800.0 1792.7 1800.0 0.0 2.1 0.0 1800.0 0.0 57.1
U-Waved-40-45-SSTR5 3480.0 3660.0 146.4 3480.0 3660.0 1650.4 1800.0 4.9 3.2 3.3 1800.0 0.0 195.2
U-Waved-40-45-SSTR6 2685.0 2760.0 4.7 2700.0 2700.0 100.3 107.8 4.4 2.8 4.4 1800.0 2.2 55.9
U-Waved-40-75-SSTR1 4980.0 4980.0 0.6 4980.0 4980.0 2.3 5.2 18.1 2.3 0.0 1800.0 0.0 31.2
U-Waved-40-75-SSTR2 4740.0 4740.0 0.8 4740.0 4740.0 2.5 5.9 10.1 2.5 3.8 1800.0 0.0 31.3
U-Waved-40-75-SSTR3 4660.0 4740.0 0.5 4680.0 4680.0 5.3 8.3 2.6 2.5 1.3 1800.0 1.3 32.2
U-Waved-40-75-SSTR4 4800.0 4800.0 0.8 4800.0 4800.0 2.5 5.7 21.3 2.5 0.0 1800.0 0.0 37.5
U-Waved-40-75-SSTR5 3840.0 3840.0 2.7 3840.0 3840.0 2.5 7.7 15.6 2.4 0.0 1800.0 0.0 40.3
U-Waved-40-75-SSTR6 3400.0 3480.0 1.1 3420.0 3420.0 5.4 9.0 12.3 2.5 5.3 1800.0 0.0 39.4
U-Waved-40-105-SSTR1 5600.0 5760.0 0.5 5640.0 5760.0 1797.5 1800.0 19.8 1.9 0.0 1800.0 0.0 25.4
U-Waved-40-105-SSTR2 5280.0 5400.0 3.4 5280.0 5400.0 1794.3 1800.0 22.2 2.4 5.6 1800.0 0.0 29.1
U-Waved-40-105-SSTR3 5160.0 5160.0 0.2 5160.0 5160.0 2.5 5.1 2.3 2.5 0.0 1800.0 0.0 31.2
U-Waved-40-105-SSTR4 5380.0 5520.0 5.9 5400.0 5520.0 1792.0 1800.0 31.5 2.0 5.4 1800.0 0.0 36.8
U-Waved-40-105-SSTR5 4936.0 5040.0 9.6 4980.0 4980.0 1792.1 1804.1 21.7 2.4 9.6 1800.0 1.2 45.2
U-Waved-40-105-SSTR6 4771.4 4800.0 3.4 4800.0 4800.0 2.8 8.9 11.3 2.7 8.8 1800.0 0.0 37.6

U-Waveless-40-45-SSTR1 3040.0 3360.0 1.5 3060.0 3360.0 1796.1 1800.0 1.8 2.4 0.0 1800.0 0.0 59.0
U-Waveless-40-45-SSTR2 2360.0 2520.0 2.0 2400.0 2520.0 1795.9 1800.0 9.5 2.1 0.0 1800.0 0.0 123.0
U-Waveless-40-45-SSTR3 2230.0 2340.0 12.3 2280.0 2280.0 99.4 114.8 10.5 3.0 7.9 1800.0 0.0 113.8
U-Waveless-40-45-SSTR4 2640.0 2940.0 117.2 2640.0 2940.0 1680.6 1800.0 16.3 2.3 0.0 1800.0 0.0 360.0
U-Waveless-40-45-SSTR5 2280.0 2340.0 477.3 2340.0 2340.0 2.9 483.1 25.6 2.9 7.7 1800.0 0.0 360.0
U-Waveless-40-45-SSTR6 2236.0 2280.0 10.3 2280.0 2280.0 2.5 15.3 13.2 2.5 7.9 1800.0 2.6 81.9
U-Waveless-40-75-SSTR1 4128.0 4320.0 7.4 4140.0 4320.0 1790.8 1800.0 22.2 1.8 0.0 1800.0 0.0 33.0
U-Waveless-40-75-SSTR2 3540.0 3600.0 3.8 3540.0 3540.0 17.9 23.6 39.0 2.0 6.8 1800.0 1.7 38.4
U-Waveless-40-75-SSTR3 3360.0 3420.0 4.4 3360.0 3360.0 37.2 43.5 12.5 1.9 8.9 1800.0 1.8 40.7
U-Waveless-40-75-SSTR4 3720.0 3900.0 125.3 3720.0 3900.0 1672.8 1800.0 24.6 2.0 10.8 1800.0 1.5 311.6
U-Waveless-40-75-SSTR5 3441.2 3540.0 207.6 3480.0 3540.0 1589.6 1800.0 10.2 2.8 6.8 1800.0 0.0 242.4
U-Waveless-40-75-SSTR6 3286.7 3360.0 15.1 3300.0 3360.0 1782.1 1800.0 12.5 2.8 7.1 1800.0 0.0 57.6
U-Waveless-40-105-SSTR1 6880.0 7200.0 0.4 6900.0 7200.0 1797.4 1800.0 13.3 2.3 0.0 1800.0 0.0 22.8
U-Waveless-40-105-SSTR2 5420.0 5460.0 0.4 5460.0 5460.0 2.3 5.0 20.9 2.3 1.1 1800.0 1.1 25.3
U-Waveless-40-105-SSTR3 4760.0 4800.0 0.5 4800.0 4800.0 1.8 4.1 5.0 1.8 0.0 1800.0 0.0 27.9
U-Waveless-40-105-SSTR4 5760.0 5760.0 1.6 5760.0 5760.0 2.0 5.5 41.7 1.9 0.0 1800.0 0.0 26.3
U-Waveless-40-105-SSTR5 5040.0 5040.0 0.9 5040.0 5040.0 2.1 5.0 28.6 2.1 16.7 1800.0 0.0 28.3
U-Waveless-40-105-SSTR6 4620.0 4620.0 0.8 4620.0 4620.0 2.3 5.3 15.6 2.2 10.4 1800.0 0.0 30.7

E-Waved-40-45-SSTR1 4140.0 4380.0 2.6 4140.0 4380.0 1795.1 1800.0 0.0 2.2 0.0 1800.0 0.0 65.0
E-Waved-40-45-SSTR2 3769.7 3960.0 1.4 3780.0 3960.0 1795.1 1800.0 4.5 3.6 4.5 1800.0 0.0 99.4
E-Waved-40-45-SSTR3 3718.3 3780.0 1.2 3720.0 3780.0 1795.6 1800.0 1.6 3.2 0.0 1800.0 0.0 69.1
E-Waved-40-45-SSTR4 4080.0 4320.0 2.2 4080.0 4320.0 1795.7 1800.0 11.1 2.2 0.0 1800.0 0.0 62.8
E-Waved-40-45-SSTR5 3156.6 3360.0 846.4 3180.0 3360.0 950.2 1800.0 8.9 3.3 7.1 1800.0 0.0 360.0
E-Waved-40-45-SSTR6 2464.5 2580.0 45.8 2520.0 2520.0 1757.1 1806.0 4.8 3.2 4.8 1800.0 0.0 173.9
E-Waved-40-75-SSTR1 5580.0 5880.0 0.7 5580.0 5880.0 1797.1 1800.0 0.0 2.2 0.0 1800.0 0.0 30.1
E-Waved-40-75-SSTR2 5046.0 5220.0 0.6 5100.0 5220.0 1796.7 1800.0 3.4 2.7 3.4 1800.0 0.0 31.5
E-Waved-40-75-SSTR3 5036.0 5100.0 4.5 5040.0 5100.0 1792.9 1800.0 2.4 2.7 2.4 1800.0 0.0 32.8
E-Waved-40-75-SSTR4 5460.0 5760.0 1.2 5460.0 5760.0 1796.9 1800.0 17.7 1.9 8.3 1800.0 0.0 29.9
E-Waved-40-75-SSTR5 4530.0 4620.0 1.3 4560.0 4620.0 1795.9 1800.0 9.1 2.9 9.1 1800.0 0.0 37.2
E-Waved-40-75-SSTR6 4260.0 4260.0 4.7 4260.0 4260.0 3.0 10.8 7.0 3.0 7.0 1800.0 0.0 34.2
E-Waved-40-105-SSTR1 5460.0 5460.0 0.1 5460.0 5460.0 2.2 4.5 7.7 2.2 7.7 1800.0 0.0 42.4
E-Waved-40-105-SSTR2 4980.0 4980.0 0.2 4980.0 4980.0 2.1 4.4 8.4 2.1 4.8 1800.0 0.0 37.7
E-Waved-40-105-SSTR3 4860.0 4860.0 0.2 4860.0 4860.0 2.8 5.8 3.7 2.8 3.7 1800.0 0.0 37.2
E-Waved-40-105-SSTR4 4800.0 4800.0 0.9 4800.0 4800.0 2.3 5.4 22.5 2.2 10.0 1800.0 0.0 40.1
E-Waved-40-105-SSTR5 3850.9 3900.0 349.6 3900.0 3900.0 2.6 354.7 21.5 2.5 7.7 1800.0 0.0 360.0
E-Waved-40-105-SSTR6 3448.2 3480.0 63.2 3480.0 3480.0 3.6 70.4 15.5 3.6 15.5 1800.0 0.0 273.4

E-Waveless-40-45-SSTR1 2920.0 2940.0 92.3 2940.0 2940.0 2.0 96.3 14.3 2.0 14.3 1800.0 0.0 235.0
E-Waveless-40-45-SSTR2 2352.3 2520.0 62.5 2400.0 2400.0 1743.2 1807.9 10.0 2.2 5.0 1800.0 5.0 140.0
E-Waveless-40-45-SSTR3 2101.8 2160.0 14.5 2160.0 2160.0 2.8 20.1 5.6 2.8 5.6 1800.0 0.0 113.9
E-Waveless-40-45-SSTR4 2720.0 2940.0 392.0 2760.0 2940.0 1406.0 1800.0 14.3 1.9 14.3 1800.0 0.0 360.0
E-Waveless-40-45-SSTR5 2349.9 2460.0 104.1 2400.0 2400.0 1700.6 1807.1 32.5 2.5 15.0 1800.0 5.0 357.6
E-Waveless-40-45-SSTR6 2111.8 2160.0 7.2 2160.0 2160.0 3.0 13.2 13.9 3.0 5.6 1800.0 0.0 123.6
E-Waveless-40-75-SSTR1 5070.0 5340.0 0.8 5100.0 5340.0 1797.5 1800.0 18.0 1.7 9.0 1800.0 0.0 28.8
E-Waveless-40-75-SSTR2 4121.5 4260.0 82.8 4140.0 4260.0 1714.9 1800.0 21.1 2.4 19.7 1800.0 0.0 194.9
E-Waveless-40-75-SSTR3 3983.4 4020.0 10.1 4020.0 4020.0 1.9 13.9 16.4 1.9 9.0 1800.0 0.0 53.1
E-Waveless-40-75-SSTR4 4294.5 4440.0 327.9 4320.0 4380.0 1470.3 1800.0 23.3 1.9 23.3 1800.0 1.4 360.0
E-Waveless-40-75-SSTR5 4056.1 4140.0 231.3 4080.0 4080.0 1446.5 1680.4 19.1 2.7 14.7 1800.0 1.5 351.1
E-Waveless-40-75-SSTR6 3936.5 4020.0 15.5 3960.0 3960.0 152.3 170.6 22.7 2.8 6.1 1800.0 0.0 51.3
E-Waveless-40-105-SSTR1 5280.0 5280.0 0.2 5280.0 5280.0 1.6 3.3 0.0 1.6 0.0 1800.0 0.0 34.3
E-Waveless-40-105-SSTR2 3960.0 3960.0 1.5 3960.0 3960.0 1.7 4.8 6.1 1.7 1.5 1800.0 0.0 34.8
E-Waveless-40-105-SSTR3 3402.0 3540.0 2.8 3480.0 3480.0 519.3 523.8 6.9 1.7 6.9 1800.0 0.0 35.1
E-Waveless-40-105-SSTR4 4800.0 4800.0 0.6 4800.0 4800.0 2.3 5.3 10.0 2.3 10.0 1800.0 0.0 40.7
E-Waveless-40-105-SSTR5 3900.0 3900.0 25.4 3900.0 3900.0 1.9 29.1 10.8 1.8 7.7 1800.0 0.0 82.4
E-Waveless-40-105-SSTR6 3400.9 3480.0 3.2 3420.0 3480.0 1794.8 1800.0 6.9 2.0 3.4 1800.0 0.0 48.3
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Table 7 Results for Instances with 40 batches, 10 truck departures per staging lane

Branch & Price S GUR MH

Linear Relaxation Integer

Instance LBLP UBLP CPULP LBIP UBIP CPUIPCPUBP%∆S CPUS%∆GUR CPUGUR%∆MH CPUMH

U-Waved-40-45-SSTR1 4800.0 4800.0 0.6 4800.0 4800.0 1.8 4.2 10.0 1.8 10.0 1800.0 0.0 30.5
U-Waved-40-45-SSTR2 4140.0 4140.0 0.3 4140.0 4140.0 2.1 4.5 8.7 2.1 1.4 1800.0 0.0 32.4
U-Waved-40-45-SSTR3 3660.0 3660.0 0.2 3660.0 3660.0 2.0 4.3 9.8 2.0 9.8 1800.0 0.0 33.1
U-Waved-40-45-SSTR4 2880.0 2880.0 16.4 2880.0 2880.0 2.0 20.3 50.0 2.0 33.3 1800.0 0.0 43.1
U-Waved-40-45-SSTR5 2700.0 3000.0 6.0 2760.0 2820.0 1791.8 1800.0 6.4 2.2 6.4 1800.0 6.4 61.7
U-Waved-40-45-SSTR6 2640.0 2820.0 1.3 2700.0 2760.0 1796.3 1800.0 2.2 2.4 2.2 1800.0 2.2 43.2
U-Waved-40-75-SSTR1 6240.0 6240.0 0.2 6240.0 6240.0 1.7 3.6 8.7 1.7 0.0 1800.0 0.0 22.9
U-Waved-40-75-SSTR2 5400.0 5400.0 0.2 5400.0 5400.0 1.7 3.5 6.7 1.7 1.1 1800.0 0.0 26.1
U-Waved-40-75-SSTR3 4920.0 4920.0 0.1 4920.0 4920.0 1.7 3.6 8.5 1.7 1.2 1800.0 0.0 23.8
U-Waved-40-75-SSTR4 4320.0 4320.0 0.4 4320.0 4320.0 1.8 3.9 11.1 1.7 0.0 1800.0 0.0 27.3
U-Waved-40-75-SSTR5 3780.0 3780.0 2.5 3780.0 3780.0 1.9 6.1 17.5 1.8 3.2 1800.0 0.0 32.2
U-Waved-40-75-SSTR6 3630.0 3660.0 1.0 3660.0 3660.0 2.0 4.9 11.5 2.0 6.6 1800.0 1.6 30.5
U-Waved-40-105-SSTR1 7680.0 7680.0 0.1 7680.0 7680.0 1.5 3.2 6.3 1.5 0.0 1800.0 0.0 21.3
U-Waved-40-105-SSTR2 6960.0 6960.0 0.1 6960.0 6960.0 1.5 3.2 8.6 1.5 4.3 1800.0 0.0 22.4
U-Waved-40-105-SSTR3 6480.0 6480.0 0.2 6480.0 6480.0 1.6 3.4 0.9 1.6 0.0 1800.0 0.0 23.1
U-Waved-40-105-SSTR4 5760.0 5760.0 0.5 5760.0 5760.0 1.5 3.6 26.0 1.5 0.0 1800.0 0.0 24.2
U-Waved-40-105-SSTR5 5220.0 5220.0 0.6 5220.0 5220.0 1.7 3.9 26.4 1.6 14.9 1800.0 0.0 27.2
U-Waved-40-105-SSTR6 5040.0 5040.0 0.3 5040.0 5040.0 1.9 4.0 0.0 1.9 0.0 1800.0 0.0 27.4

E-Waved-40-45-SSTR1 4000.0 4320.0 0.6 4020.0 4320.0 1797.3 1800.0 0.0 2.1 0.0 1800.0 0.0 43.1
E-Waved-40-45-SSTR2 3410.0 3600.0 0.6 3420.0 3600.0 1797.3 1800.0 0.0 2.1 0.0 1800.0 0.0 40.4
E-Waved-40-45-SSTR3 3110.0 3300.0 0.7 3120.0 3300.0 1797.0 1800.0 7.3 2.3 0.0 1800.0 0.0 40.9
E-Waved-40-45-SSTR4 2800.0 2940.0 3.3 2820.0 2940.0 1794.7 1800.0 16.3 2.1 0.0 1800.0 0.0 65.9
E-Waved-40-45-SSTR5 2600.0 2640.0 6.4 2640.0 2640.0 2.0 10.3 13.6 2.0 9.1 1800.0 0.0 66.0
E-Waved-40-45-SSTR6 2580.0 2640.0 4.7 2580.0 2640.0 1793.1 1800.0 6.8 2.3 4.5 1800.0 0.0 71.6
E-Waved-40-75-SSTR1 4680.0 5280.0 0.7 4800.0 5280.0 1797.6 1800.0 0.0 1.6 0.0 1800.0 0.0 33.7
E-Waved-40-75-SSTR2 3921.4 4260.0 0.9 3960.0 4260.0 1797.4 1800.0 18.3 1.7 9.9 1800.0 1.4 36.3
E-Waved-40-75-SSTR3 3441.4 3720.0 0.6 3480.0 3720.0 1797.5 1800.0 9.7 1.9 1.6 1800.0 0.0 40.7
E-Waved-40-75-SSTR4 3480.0 3840.0 5.7 3540.0 3840.0 1792.3 1800.0 12.5 2.0 0.0 1800.0 0.0 50.1
E-Waved-40-75-SSTR5 3180.0 3300.0 329.2 3240.0 3300.0 1468.8 1800.0 30.9 2.0 12.7 1800.0 0.0 360.0
E-Waved-40-75-SSTR6 2945.0 3060.0 26.2 3000.0 3060.0 1771.7 1800.0 13.7 2.1 11.8 1800.0 0.0 114.8
E-Waved-40-105-SSTR1 7260.0 7260.0 0.6 7260.0 7260.0 1.3 3.2 19.0 1.3 6.6 1800.0 0.0 22.6
E-Waved-40-105-SSTR2 6180.0 6180.0 11.8 6180.0 6180.0 1.3 14.4 16.5 1.3 6.8 1800.0 0.0 60.5
E-Waved-40-105-SSTR3 5760.0 5760.0 2.5 5760.0 5760.0 1.4 5.3 15.6 1.4 14.6 1800.0 0.0 34.3
E-Waved-40-105-SSTR4 6720.0 6720.0 0.1 6720.0 6720.0 1.3 2.8 7.1 1.3 0.0 1800.0 0.0 22.4
E-Waved-40-105-SSTR5 5760.0 5760.0 6.4 5760.0 5760.0 1.4 9.2 11.5 1.4 11.5 1800.0 0.0 36.1
E-Waved-40-105-SSTR6 5520.0 5520.0 0.5 5520.0 5520.0 1.6 3.7 7.6 1.6 7.6 1800.0 0.0 27.4
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Table 8 Results for Instances with 80 batches, 5 truck departures per staging lane

Branch & Price S MH

Linear Relaxation Integer

Instance LBLP UBLP CPULP LBIP UBIP CPUIP CPUBP %∆S CPUS %∆MH CPUMH

U-Waved-80-45-SSTR1 9,120.0 1,800.0 1,800.0 5.3 8.1 0.0 360.0
U-Waved-80-45-SSTR2 8,520.0 1,800.0 1,800.0 6.3 12.1 -0.7 360.0
U-Waved-80-45-SSTR3 8,143.0 8,220.0 994.3 8,160.0 8,220.0 795.8 1,800.0 2.9 9.9 0.0 360.0
U-Waved-80-45-SSTR4 9,120.0 1,800.0 1,800.0 10.5 7.7 0.0 360.0
U-Waved-80-45-SSTR5 7,020.0 1,800.0 1,800.0 12.0 10.1 0.0 360.0
U-Waved-80-45-SSTR6 5,280.0 1,800.0 1,800.0 9.1 10.0 0.0 360.0
U-Waved-80-75-SSTR1 10,020.0 10,020.0 26.1 10,020.0 10,020.0 6.8 39.7 17.4 6.8 0.0 95.0
U-Waved-80-75-SSTR2 9,540.0 9,540.0 25.2 9,540.0 9,540.0 8.9 42.8 17.6 8.8 0.0 148.7
U-Waved-80-75-SSTR3 9,400.0 9,420.0 14.3 9,420.0 9,420.0 8.4 31.0 3.8 8.4 0.0 71.5
U-Waved-80-75-SSTR4 9,600.0 9,600.0 21.8 9,600.0 9,600.0 7.3 36.3 15.0 7.3 0.0 102.9
U-Waved-80-75-SSTR5 7,650.0 7,680.0 488.1 7,680.0 7,680.0 8.0 504.1 14.1 7.9 0.0 360.0
U-Waved-80-75-SSTR6 6,759.0 6,780.0 321.3 6,780.0 6,780.0 8.1 337.4 14.2 8.0 0.0 265.3
U-Waved-80-105-SSTR1 11,200.0 11,520.0 11.3 11,220.0 11,520.0 1,782.2 1,800.0 13.0 6.5 0.0 43.6
U-Waved-80-105-SSTR2 10,560.0 10,800.0 55.4 10,560.0 10,800.0 1,736.8 1,800.0 15.6 7.8 0.0 72.5
U-Waved-80-105-SSTR3 10,280.0 10,320.0 4.8 10,320.0 10,320.0 8.1 21.0 2.3 8.1 0.0 48.2
U-Waved-80-105-SSTR4 10,880.0 11,040.0 119.1 10,920.0 11,040.0 1,673.5 1,800.0 35.3 7.3 0.0 358.3
U-Waved-80-105-SSTR5 9,963.5 10,020.0 982.5 10,020.0 10,020.0 8.8 1,000.0 21.0 8.7 0.0 360.0
U-Waved-80-105-SSTR6 9,628.0 9,660.0 58.7 9,660.0 9,660.0 9.6 78.0 9.9 9.6 0.0 118.8
U-Waveless-80-45-SSTR1 5,760.0 5,760.0 2.9 5,760.0 5,760.0 6.7 16.2 9.4 6.7 0.0 71.3
U-Waveless-80-45-SSTR2 4,620.0 4,680.0 78.9 4,620.0 4,680.0 1,713.7 1,800.0 15.4 7.3 -1.3 85.9
U-Waveless-80-45-SSTR3 4,320.0 1,800.0 1,800.0 6.9 7.7 1.4 360.0
U-Waveless-80-45-SSTR4 4,980.0 1,800.0 1,800.0 39.8 7.6 -1.2 360.0
U-Waveless-80-45-SSTR5 4,620.0 1,800.0 1,800.0 16.9 8.0 -1.3 360.0
U-Waveless-80-45-SSTR6 3,915.3 4,020.0 1,628.4 3,960.0 4,020.0 161.7 1,800.0 19.4 9.8 4.5 360.0
U-Waveless-80-75-SSTR1 7,440.0 1,800.0 1,800.0 36.3 6.5 -0.8 360.0
U-Waveless-80-75-SSTR2 6,900.0 1,800.0 1,800.0 19.1 7.0 0.0 360.0
U-Waveless-80-75-SSTR3 6,720.0 1,800.0 1,800.0 17.0 7.0 0.9 360.0
U-Waveless-80-75-SSTR4 7,140.0 1,800.0 1,800.0 37.0 8.7 0.8 360.0
U-Waveless-80-75-SSTR5 6,900.0 1,800.0 1,800.0 10.4 7.4 0.0 360.0
U-Waveless-80-75-SSTR6 6,480.0 1,800.0 1,800.0 12.0 8.7 0.0 360.0
U-Waveless-80-105-SSTR1 9,840.0 1,800.0 1,800.0 26.8 6.7 0.0 360.0
U-Waveless-80-105-SSTR2 9,202.7 9,240.0 1,177.1 9,240.0 9,240.0 6.4 1,189.8 27.9 6.4 0.0 360.0
U-Waveless-80-105-SSTR3 9,030.7 9,120.0 397.5 9,060.0 9,120.0 1,395.5 1,800.0 12.5 7.1 0.0 360.0
U-Waveless-80-105-SSTR4 9,540.0 1,800.0 1,800.0 28.3 7.0 0.0 360.0
U-Waveless-80-105-SSTR5 9,180.0 1,800.0 1,800.0 19.0 7.7 0.0 360.0
U-Waveless-80-105-SSTR6 8,684.4 8,700.0 62.3 8,700.0 8,700.0 9.2 80.6 11.0 9.1 0.0 191.4
E-Waved-80-45-SSTR1 7,860.0 1,800.0 1,800.0 6.9 8.6 0.0 360.0
E-Waved-80-45-SSTR2 7,200.0 1,800.0 1,800.0 8.3 13.4 0.0 360.0
E-Waved-80-45-SSTR3 6,807.0 6,900.0 1,772.4 6,840.0 6,900.0 16.4 1,800.0 4.3 11.2 0.0 360.0
E-Waved-80-45-SSTR4 7,680.0 1,800.0 1,800.0 19.5 8.4 0.0 360.0
E-Waved-80-45-SSTR5 5,940.0 1,800.0 1,800.0 11.1 10.8 -1.0 360.0
E-Waved-80-45-SSTR6 4,620.0 1,800.0 1,800.0 13.0 13.0 0.0 360.0
E-Waved-80-75-SSTR1 12,131.3 12,180.0 31.6 12,180.0 12,180.0 6.5 44.7 3.9 6.5 0.0 88.5
E-Waved-80-75-SSTR2 10,487.9 10,740.0 20.7 10,500.0 10,740.0 1,771.8 1,800.0 3.9 7.5 0.0 78.9
E-Waved-80-75-SSTR3 10,030.0 10,080.0 8.6 10,080.0 10,080.0 8.7 26.0 2.4 8.7 0.0 53.4
E-Waved-80-75-SSTR4 9,660.0 1,800.0 1,800.0 26.1 7.1 0.0 166.0
E-Waved-80-75-SSTR5 8,520.0 1,800.0 1,800.0 19.0 7.9 0.0 360.0
E-Waved-80-75-SSTR6 8,160.0 1,800.0 1,800.0 5.9 8.5 0.7 360.0
E-Waved-80-105-SSTR1 12,600.0 1,800.0 1,800.0 2.9 7.5 0.0 360.0
E-Waved-80-105-SSTR2 10,740.0 1,800.0 1,800.0 1.7 8.1 0.6 360.0
E-Waved-80-105-SSTR3 10,020.0 1,800.0 1,800.0 0.0 9.0 0.0 360.0
E-Waved-80-105-SSTR4 9,600.0 1,800.0 1,800.0 30.6 7.2 0.0 360.0
E-Waved-80-105-SSTR5 8,040.0 1,800.0 1,800.0 17.2 9.0 -0.8 360.0
E-Waved-80-105-SSTR6 7,740.0 1,800.0 1,800.0 11.6 10.3 0.8 360.0
E-Waveless-80-45-SSTR1 4,800.0 1,800.0 1,800.0 30.0 6.9 0.0 360.0
E-Waveless-80-45-SSTR2 4,440.0 1,800.0 1,800.0 10.8 7.8 -4.2 360.0
E-Waveless-80-45-SSTR3 4,200.0 1,800.0 1,800.0 5.7 8.3 -1.4 360.0
E-Waveless-80-45-SSTR4 4,800.0 1,800.0 1,800.0 30.0 8.3 -5.3 360.0
E-Waveless-80-45-SSTR5 4,440.0 1,800.0 1,800.0 13.5 9.5 0.0 360.0
E-Waveless-80-45-SSTR6 4,020.0 1,800.0 1,800.0 10.4 12.4 0.0 360.0
E-Waveless-80-75-SSTR1 8,616.2 8,880.0 1,577.7 8,640.0 8,880.0 216.5 1,800.0 18.9 5.8 -0.7 360.0
E-Waveless-80-75-SSTR2 8,100.0 1,800.0 1,800.0 11.1 6.6 1.5 360.0
E-Waveless-80-75-SSTR3 7,800.0 1,800.0 1,800.0 6.2 7.1 0.0 360.0
E-Waveless-80-75-SSTR4 8,280.0 1,800.0 1,800.0 17.4 7.3 0.0 360.0
E-Waveless-80-75-SSTR5 8,100.0 1,800.0 1,800.0 11.1 7.2 0.7 360.0
E-Waveless-80-75-SSTR6 7,620.0 1,800.0 1,800.0 11.8 9.3 0.0 360.0
E-Waveless-80-105-SSTR1 8,460.0 1,800.0 1,800.0 14.2 6.0 0.0 360.0
E-Waveless-80-105-SSTR2 7,800.0 7,860.0 1,375.1 7,800.0 7,860.0 418.2 1,800.0 14.5 6.7 0.8 360.0
E-Waveless-80-105-SSTR3 7,560.0 1,800.0 1,800.0 12.7 8.8 1.6 360.0
E-Waveless-80-105-SSTR4 8,040.0 8,220.0 53.8 8,040.0 8,160.0 1,738.7 1,800.0 25.7 7.5 0.7 109.6
E-Waveless-80-105-SSTR5 7,800.0 7,860.0 1,273.0 7,800.0 7,860.0 519.0 1,800.0 9.9 8.1 1.5 360.0
E-Waveless-80-105-SSTR6 7,440.0 1,800.0 1,800.0 11.3 9.5 0.0 360.0
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Table 9 Results for Instances with 80 batches, 10 truck departures per staging lane

Branch & Price S MH

Linear Relaxation Integer

Instance LBLP UBLP CPULP LBIP UBIP CPUIP CPUBP %∆S CPUS %∆MH CPUMH

U-Waved-80-45-SSTR1 9,600.0 9,600.0 2.1 9,600.0 9,600.0 7.1 16.2 5.0 7.0 0.0 43.0
U-Waved-80-45-SSTR2 8,280.0 8,280.0 1.7 8,280.0 8,280.0 8.4 18.5 9.4 8.4 0.0 42.3
U-Waved-80-45-SSTR3 7,320.0 7,320.0 1.6 7,320.0 7,320.0 7.8 17.2 10.7 7.8 0.0 45.3
U-Waved-80-45-SSTR4 5,760.0 5,760.0 201.4 5,760.0 5,760.0 7.5 216.4 33.3 7.4 1.0 118.0
U-Waved-80-45-SSTR5 5,505.0 5,760.0 974.9 5,520.0 5,760.0 816.9 1,800.0 16.7 8.3 0.0 360.0
U-Waved-80-45-SSTR6 5,314.3 5,460.0 72.2 5,340.0 5,460.0 1,718.7 1,800.0 5.5 9.0 0.0 203.1
U-Waved-80-75-SSTR1 11,880.0 11,880.0 43.2 11,880.0 11,880.0 5.7 54.5 9.6 5.6 0.0 45.9
U-Waved-80-75-SSTR2 10,320.0 10,320.0 63.6 10,320.0 10,320.0 6.5 76.6 12.8 6.5 0.0 93.9
U-Waved-80-75-SSTR3 9,360.0 9,360.0 941.4 9,360.0 9,360.0 6.1 953.5 10.9 6.0 0.0 341.7
U-Waved-80-75-SSTR4 7,740.0 7,740.0 48.4 7,740.0 7,740.0 6.5 61.4 43.4 6.4 0.0 145.8
U-Waved-80-75-SSTR5 7,440.0 7,440.0 164.5 7,440.0 7,440.0 6.9 178.2 23.4 6.8 0.8 148.3
U-Waved-80-75-SSTR6 7,120.0 7,200.0 30.4 7,140.0 7,200.0 1,762.0 1,800.0 14.2 7.6 -0.8 76.4
U-Waved-80-105-SSTR1 15,360.0 15,360.0 0.9 15,360.0 15,360.0 5.0 10.8 10.2 5.0 0.0 28.8
U-Waved-80-105-SSTR2 13,860.0 13,860.0 0.9 13,860.0 13,860.0 5.6 12.1 5.2 5.6 0.0 30.1
U-Waved-80-105-SSTR3 12,900.0 12,900.0 0.7 12,900.0 12,900.0 5.7 12.1 0.9 5.7 0.0 30.0
U-Waved-80-105-SSTR4 11,520.0 11,580.0 2.5 11,520.0 11,580.0 1,791.9 1,800.0 25.9 5.5 -0.5 31.3
U-Waved-80-105-SSTR5 10,275.0 10,320.0 6.2 10,320.0 10,320.0 6.1 18.3 16.9 6.0 0.0 41.9
U-Waved-80-105-SSTR6 9,960.0 9,960.0 2.3 9,960.0 9,960.0 6.8 15.9 1.2 6.8 0.6 40.9
U-Waveless-80-45-SSTR1 6,240.0 6,240.0 3.5 6,240.0 6,240.0 6.1 15.6 7.7 6.1 0.0 54.4
U-Waveless-80-45-SSTR2 5,400.0 5,400.0 5.4 5,400.0 5,400.0 6.6 18.4 20.0 6.5 0.0 56.9
U-Waveless-80-45-SSTR3 5,280.0 1,800.0 1,800.0 4.5 6.8 0.0 360.0
U-Waveless-80-45-SSTR4 5,280.0 5,460.0 963.0 5,280.0 5,460.0 830.6 1,800.0 31.9 6.4 -2.2 179.9
U-Waveless-80-45-SSTR5 4,800.0 1,800.0 1,800.0 13.8 6.8 0.0 360.0
U-Waveless-80-45-SSTR6 4,513.3 4,800.0 160.8 4,560.0 4,800.0 1,630.9 1,800.0 7.5 8.3 -2.5 349.7
U-Waveless-80-75-SSTR1 8,800.0 9,120.0 274.7 8,820.0 9,120.0 1,520.1 1,800.0 15.8 5.2 0.0 360.0
U-Waveless-80-75-SSTR2 8,040.0 1,800.0 1,800.0 20.9 5.7 0.7 360.0
U-Waveless-80-75-SSTR3 7,980.0 1,800.0 1,800.0 11.3 6.4 0.0 360.0
U-Waveless-80-75-SSTR4 7,800.0 1,800.0 1,800.0 36.2 6.2 0.8 360.0
U-Waveless-80-75-SSTR5 7,020.0 1,800.0 1,800.0 19.7 6.0 0.8 360.0
U-Waveless-80-75-SSTR6 6,775.6 6,900.0 86.1 6,780.0 6,900.0 1,707.2 1,800.0 15.7 6.7 0.0 194.1
U-Waveless-80-105-SSTR1 11,026.7 11,160.0 3.1 11,040.0 11,160.0 1,791.9 1,800.0 30.1 5.0 0.0 34.1
U-Waveless-80-105-SSTR2 10,110.0 10,140.0 19.9 10,140.0 10,140.0 5.3 30.5 19.5 5.3 0.0 58.7
U-Waveless-80-105-SSTR3 10,035.0 10,080.0 17.1 10,080.0 10,080.0 5.4 27.8 11.9 5.4 0.0 66.7
U-Waveless-80-105-SSTR4 10,145.8 10,200.0 909.2 10,200.0 10,200.0 5.7 920.5 39.4 5.6 0.0 360.0
U-Waveless-80-105-SSTR5 9,564.0 9,600.0 395.9 9,600.0 9,600.0 6.0 407.8 21.9 6.0 0.0 360.0
U-Waveless-80-105-SSTR6 9,269.0 9,360.0 9.0 9,300.0 9,360.0 1,784.5 1,800.0 10.9 6.5 0.0 48.5
E-Waved-80-45-SSTR1 7,356.0 7,680.0 321.7 7,380.0 7,680.0 1,471.7 1,800.0 7.0 6.6 0.0 85.0
E-Waved-80-45-SSTR2 6,354.0 6,660.0 678.2 6,360.0 6,660.0 1,114.2 1,800.0 12.6 7.6 0.9 360.0
E-Waved-80-45-SSTR3 5,814.0 6,060.0 1,091.9 5,820.0 6,060.0 700.7 1,800.0 13.9 7.4 1.0 199.8
E-Waved-80-45-SSTR4 5,580.0 1,800.0 1,800.0 32.3 7.0 4.1 360.0
E-Waved-80-45-SSTR5 5,460.0 1,800.0 1,800.0 15.4 8.1 0.0 360.0
E-Waved-80-45-SSTR6 5,160.0 1,800.0 1,800.0 18.6 8.8 1.1 360.0
E-Waved-80-75-SSTR1 10,140.0 10,140.0 3.1 10,140.0 10,140.0 6.2 15.5 13.6 6.2 0.0 47.3
E-Waved-80-75-SSTR2 8,610.0 8,640.0 10.0 8,640.0 8,640.0 6.7 23.2 17.4 6.6 0.0 360.0
E-Waved-80-75-SSTR3 7,830.0 7,860.0 2.2 7,860.0 7,860.0 6.5 15.2 5.3 6.5 0.0 52.6
E-Waved-80-75-SSTR4 6,960.0 1,800.0 1,800.0 37.9 6.5 0.0 84.3
E-Waved-80-75-SSTR5 6,600.0 1,800.0 1,800.0 29.1 6.7 1.8 360.0
E-Waved-80-75-SSTR6 6,480.0 1,800.0 1,800.0 14.8 7.6 -0.9 360.0
E-Waved-80-105-SSTR1 15,900.0 15,900.0 0.7 15,900.0 15,900.0 4.4 9.4 3.4 4.3 0.0 25.4
E-Waved-80-105-SSTR2 13,380.0 13,380.0 1.5 13,380.0 13,380.0 5.0 11.5 8.1 5.0 0.0 28.1
E-Waved-80-105-SSTR3 12,480.0 12,480.0 1.3 12,480.0 12,480.0 5.2 11.7 3.8 5.1 0.0 30.1
E-Waved-80-105-SSTR4 12,480.0 12,480.0 4.3 12,480.0 12,480.0 4.9 14.0 15.4 4.8 0.0 38.1
E-Waved-80-105-SSTR5 11,328.0 11,340.0 432.8 11,340.0 11,340.0 5.5 443.7 14.8 5.4 0.0 360.0
E-Waved-80-105-SSTR6 11,218.2 11,280.0 314.9 11,220.0 11,280.0 1,478.6 1,800.0 5.9 6.5 -0.5 206.6
E-Waveless-80-45-SSTR1 6,720.0 6,720.0 526.7 6,720.0 6,720.0 6.7 540.0 14.3 6.6 0.0 81.0
E-Waveless-80-45-SSTR2 5,660.0 5,700.0 953.3 5,700.0 5,700.0 6.2 965.6 11.6 6.1 0.0 118.7
E-Waveless-80-45-SSTR3 5,160.0 1,800.0 1,800.0 14.0 6.7 1.1 360.0
E-Waveless-80-45-SSTR4 6,080.0 6,240.0 15.9 6,120.0 6,240.0 1,777.7 1,800.0 8.7 6.4 0.0 151.3
E-Waveless-80-45-SSTR5 5,340.0 1,800.0 1,800.0 18.0 7.2 0.0 360.0
E-Waveless-80-45-SSTR6 4,980.0 1,800.0 1,800.0 18.1 7.7 0.0 360.0
E-Waveless-80-75-SSTR1 7,680.0 1,800.0 1,800.0 37.5 6.3 0.0 360.0
E-Waveless-80-75-SSTR2 6,660.0 1,800.0 1,800.0 34.2 6.2 1.8 360.0
E-Waveless-80-75-SSTR3 6,540.0 1,800.0 1,800.0 14.7 6.2 0.0 360.0
E-Waveless-80-75-SSTR4 7,200.0 1,800.0 1,800.0 40.0 6.3 0.8 360.0
E-Waveless-80-75-SSTR5 6,360.0 1,800.0 1,800.0 21.7 6.4 0.9 360.0
E-Waveless-80-75-SSTR6 6,180.0 1,800.0 1,800.0 20.4 7.2 0.0 360.0
E-Waveless-80-105-SSTR1 12,930.0 13,140.0 1.1 12,960.0 13,140.0 1,794.7 1,800.0 6.4 4.2 0.0 28.0
E-Waveless-80-105-SSTR2 11,030.0 11,160.0 3.6 11,040.0 11,160.0 1,791.7 1,800.0 8.1 4.7 0.0 36.8
E-Waveless-80-105-SSTR3 10,537.8 10,680.0 626.9 10,560.0 10,680.0 1,168.0 1,800.0 9.0 5.1 0.0 360.0
E-Waveless-80-105-SSTR4 12,060.0 12,060.0 5.2 12,060.0 12,060.0 4.9 14.9 20.4 4.8 0.0 39.6
E-Waveless-80-105-SSTR5 10,680.0 1,800.0 1,800.0 8.4 5.2 0.0 360.0
E-Waveless-80-105-SSTR6 10,342.4 10,380.0 226.7 10,380.0 10,380.0 5.8 238.3 7.5 5.8 0.0 360.0
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Table 10 Results for Instances with 80 batches, 20 truck departures per staging lane

Branch & Price S MH

Linear Relaxation Integer

Instance LBLP UBLP CPULP LBIP UBIP CPUIP CPUBP %∆S CPUS %∆MH CPUMH

U-Waved-80-45-SSTR1 8,160.0 8,160.0 1.2 8,160.0 8,160.0 4.9 10.9 5.9 4.9 0.0 38.9
U-Waved-80-45-SSTR2 7,500.0 7,500.0 0.4 7,500.0 7,500.0 5.6 11.6 0.0 5.6 0.0 41.1
U-Waved-80-45-SSTR3 7,140.0 7,140.0 1.0 7,140.0 7,140.0 5.3 11.6 3.4 5.3 0.0 39.3
U-Waved-80-45-SSTR4 6,720.0 6,720.0 12.0 6,720.0 6,720.0 5.8 23.5 28.6 5.7 0.0 43.7
U-Waved-80-45-SSTR5 6,160.0 6,240.0 10.4 6,180.0 6,240.0 1,783.7 1,800.0 16.3 5.9 0.0 64.8
U-Waved-80-45-SSTR6 6,020.0 6,180.0 1.5 6,060.0 6,180.0 1,792.4 1,800.0 1.0 6.2 -1.0 41.4
U-Waved-80-75-SSTR1 10,320.0 10,320.0 1.6 10,320.0 10,320.0 4.3 10.1 12.2 4.2 0.0 26.0
U-Waved-80-75-SSTR2 9,600.0 9,600.0 1.0 9,600.0 9,600.0 4.6 10.2 10.6 4.6 0.0 30.3
U-Waved-80-75-SSTR3 9,120.0 9,120.0 1.4 9,120.0 9,120.0 4.5 10.4 7.2 4.5 0.0 28.8
U-Waved-80-75-SSTR4 8,160.0 8,220.0 87.6 8,160.0 8,220.0 1,707.8 1,800.0 35.8 4.6 0.0 204.4
U-Waved-80-75-SSTR5 7,740.0 1,800.0 1,800.0 21.7 5.0 1.5 360.0
U-Waved-80-75-SSTR6 7,625.0 7,680.0 20.0 7,680.0 7,680.0 5.5 30.9 16.4 5.4 0.0 92.1
U-Waved-80-105-SSTR1 13,440.0 13,440.0 0.4 13,440.0 13,440.0 3.8 7.9 8.0 3.8 0.0 25.8
U-Waved-80-105-SSTR2 12,240.0 12,240.0 0.9 12,240.0 12,240.0 4.3 9.5 13.7 4.3 0.0 27.8
U-Waved-80-105-SSTR3 12,240.0 12,240.0 0.3 12,240.0 12,240.0 4.3 8.9 4.4 4.3 0.0 26.1
U-Waved-80-105-SSTR4 11,760.0 11,760.0 1.3 11,760.0 11,760.0 4.2 9.6 28.6 4.1 0.0 28.3
U-Waved-80-105-SSTR5 10,725.0 10,740.0 3.8 10,740.0 10,740.0 4.5 12.8 12.3 4.5 0.0 39.1
U-Waved-80-105-SSTR6 10,260.0 10,260.0 2.3 10,260.0 10,260.0 5.1 12.5 7.0 5.1 0.0 35.0
E-Waved-80-45-SSTR1 6,240.0 6,240.0 4.9 6,240.0 6,240.0 5.1 15.0 23.1 5.0 0.0 49.9
E-Waved-80-45-SSTR2 5,700.0 5,700.0 3.7 5,700.0 5,700.0 5.6 14.9 6.3 5.6 0.0 58.2
E-Waved-80-45-SSTR3 5,400.0 5,400.0 2.8 5,400.0 5,400.0 5.4 13.5 18.9 5.3 0.0 59.3
E-Waved-80-45-SSTR4 5,208.0 5,340.0 47.4 5,220.0 5,340.0 1,746.9 1,800.0 34.8 5.7 0.0 168.8
E-Waved-80-45-SSTR5 5,025.0 5,160.0 239.8 5,040.0 5,160.0 1,554.2 1,800.0 14.0 6.1 0.0 360.0
E-Waved-80-45-SSTR6 4,980.0 4,980.0 223.7 4,980.0 4,980.0 6.7 237.1 15.7 6.7 0.0 360.0
E-Waved-80-75-SSTR1 9,840.0 10,080.0 4.0 9,840.0 10,080.0 1,791.9 1,800.0 14.3 4.1 0.0 32.1
E-Waved-80-75-SSTR2 8,890.0 9,120.0 36.9 8,940.0 9,120.0 1,758.8 1,800.0 4.6 4.3 0.0 55.6
E-Waved-80-75-SSTR3 8,320.0 8,520.0 40.6 8,340.0 8,520.0 1,755.1 1,800.0 7.0 4.2 0.0 88.5
E-Waved-80-75-SSTR4 9,120.0 9,180.0 5.3 9,120.0 9,180.0 1,790.3 1,800.0 20.9 4.5 -0.7 40.9
E-Waved-80-75-SSTR5 8,400.0 1,800.0 1,800.0 19.3 4.8 0.0 360.0
E-Waved-80-75-SSTR6 8,007.9 8,100.0 631.1 8,040.0 8,100.0 1,163.6 1,800.0 8.9 5.3 0.0 360.0
E-Waved-80-105-SSTR1 9,600.0 1,800.0 1,800.0 15.0 4.1 0.0 360.0
E-Waved-80-105-SSTR2 9,000.0 1,800.0 1,800.0 8.0 4.4 0.0 360.0
E-Waved-80-105-SSTR3 8,880.0 1,800.0 1,800.0 8.1 4.5 0.0 360.0
E-Waved-80-105-SSTR4 8,340.0 1,800.0 1,800.0 43.9 4.6 0.0 360.0
E-Waved-80-105-SSTR5 8,100.0 1,800.0 1,800.0 23.7 4.8 0.0 360.0
E-Waved-80-105-SSTR6 7,900.6 7,920.0 9.4 7,920.0 7,920.0 5.5 20.3 11.4 5.4 0.0 52.8
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Table 11 Results for Instances with 160 batches, 5 truck departures per staging lane

Branch & Price S MH

Linear Relaxation Integer

Instance LBLP UBLP CPULP LBIP UBIP CPUIP CPUBP %∆S CPUS %∆MH CPUMH

U-Waved-160-45-SSTR1 17,760.0 1,800.0 1,800.0 0.3 29.3 0.0 360.0
U-Waved-160-45-SSTR2 16,620.0 1,800.0 1,800.0 7.9 48.9 0.0 360.0
U-Waved-160-45-SSTR3 16,380.0 1,800.0 1,800.0 2.9 41.8 -0.7 360.0
U-Waved-160-45-SSTR4 17,760.0 1,800.0 1,800.0 8.8 30.6 0.0 360.0
U-Waved-160-45-SSTR5 13,920.0 1,800.0 1,800.0 7.3 36.3 4.9 360.0
U-Waved-160-45-SSTR6 10,620.0 1,800.0 1,800.0 6.8 41.9 0.6 360.0
U-Waved-160-75-SSTR1 20,220.0 1,800.0 1,800.0 15.7 28.3 0.0 360.0
U-Waved-160-75-SSTR2 19,260.0 1,800.0 1,800.0 17.1 36.7 0.0 360.0
U-Waved-160-75-SSTR3 18,900.0 1,800.0 1,800.0 3.5 33.0 0.0 360.0
U-Waved-160-75-SSTR4 19,200.0 1,800.0 1,800.0 14.4 29.4 0.0 360.0
U-Waved-160-75-SSTR5 15,600.0 1,800.0 1,800.0 11.2 32.1 -1.2 360.0
U-Waved-160-75-SSTR6 13,740.0 1,800.0 1,800.0 7.9 32.7 0.4 360.0
U-Waved-160-105-SSTR1 22,400.0 22,560.0 406.3 22,440.0 22,560.0 1,367.8 1,800.0 23.1 25.9 0.0 360.0
U-Waved-160-105-SSTR2 21,120.0 21,240.0 700.8 21,120.0 21,240.0 1,068.6 1,800.0 22.6 30.6 2.8 360.0
U-Waved-160-105-SSTR3 20,520.0 20,520.0 988.9 20,520.0 20,520.0 31.1 1,051.0 6.4 31.0 0.6 360.0
U-Waved-160-105-SSTR4 21,840.0 1,800.0 1,800.0 30.2 29.2 2.2 360.0
U-Waved-160-105-SSTR5 20,220.0 1,800.0 1,800.0 18.4 32.6 1.2 360.0
U-Waved-160-105-SSTR6 19,320.0 1,800.0 1,800.0 12.4 37.3 1.2 360.0
U-Waveless-160-45-SSTR1 9,240.0 1,800.0 1,800.0 19.5 24.2 3.8 360.0
U-Waveless-160-45-SSTR2 8,400.0 1,800.0 1,800.0 12.9 26.3 4.1 360.0
U-Waveless-160-45-SSTR3 7,680.0 1,800.0 1,800.0 10.2 29.6 3.0 360.0
U-Waveless-160-45-SSTR4 9,240.0 1,800.0 1,800.0 25.3 26.6 1.3 360.0
U-Waveless-160-45-SSTR5 8,280.0 1,800.0 1,800.0 11.6 28.9 1.4 360.0
U-Waveless-160-45-SSTR6 7,620.0 1,800.0 1,800.0 7.9 34.4 3.1 360.0
U-Waveless-160-75-SSTR1 15,600.0 1,800.0 1,800.0 23.5 22.6 0.4 360.0
U-Waveless-160-75-SSTR2 13,560.0 1,800.0 1,800.0 19.0 23.5 3.4 360.0
U-Waveless-160-75-SSTR3 12,600.0 1,800.0 1,800.0 12.4 26.1 1.9 360.0
U-Waveless-160-75-SSTR4 15,540.0 1,800.0 1,800.0 27.0 24.9 0.4 360.0
U-Waveless-160-75-SSTR5 13,860.0 1,800.0 1,800.0 9.5 25.9 2.9 360.0
U-Waveless-160-75-SSTR6 12,480.0 1,800.0 1,800.0 14.9 29.4 1.9 360.0
U-Waveless-160-105-SSTR1 19,960.0 20,160.0 1,271.9 19,980.0 20,160.0 506.6 1,800.0 24.4 21.6 0.3 360.0
U-Waveless-160-105-SSTR2 18,480.0 1,800.0 1,800.0 27.3 23.6 1.0 360.0
U-Waveless-160-105-SSTR3 17,280.0 1,800.0 1,800.0 15.3 25.1 0.3 360.0
U-Waveless-160-105-SSTR4 19,740.0 1,800.0 1,800.0 25.5 23.8 3.5 360.0
U-Waveless-160-105-SSTR5 18,480.0 1,800.0 1,800.0 17.2 25.5 1.9 360.0
U-Waveless-160-105-SSTR6 17,160.0 1,800.0 1,800.0 10.5 30.2 0.3 360.0
E-Waved-160-45-SSTR1 13,260.0 1,800.0 1,800.0 13.1 32.6 -3.3 360.0
E-Waved-160-45-SSTR2 12,060.0 1,800.0 1,800.0 8.0 49.9 0.0 360.0
E-Waved-160-45-SSTR3 11,700.0 1,800.0 1,800.0 3.1 52.4 0.0 360.0
E-Waved-160-45-SSTR4 12,480.0 1,800.0 1,800.0 24.5 36.2 0.0 360.0
E-Waved-160-45-SSTR5 10,140.0 1,800.0 1,800.0 20.1 55.2 2.3 360.0
E-Waved-160-45-SSTR6 8,280.0 1,800.0 1,800.0 13.8 65.7 1.4 360.0
E-Waved-160-75-SSTR1 19,920.0 1,800.0 1,800.0 19.0 28.4 0.0 360.0
E-Waved-160-75-SSTR2 17,760.0 1,800.0 1,800.0 8.8 34.1 0.3 360.0
E-Waved-160-75-SSTR3 17,100.0 1,800.0 1,800.0 1.8 32.1 0.0 360.0
E-Waved-160-75-SSTR4 16,980.0 1,800.0 1,800.0 34.3 29.7 0.0 360.0
E-Waved-160-75-SSTR5 14,820.0 1,800.0 1,800.0 19.0 33.8 3.5 360.0
E-Waved-160-75-SSTR6 14,280.0 1,800.0 1,800.0 9.2 35.2 2.1 360.0
E-Waved-160-105-SSTR1 20,520.0 1,800.0 1,800.0 18.4 25.6 0.0 360.0
E-Waved-160-105-SSTR2 18,780.0 1,800.0 1,800.0 16.0 29.2 0.6 360.0
E-Waved-160-105-SSTR3 18,360.0 1,800.0 1,800.0 3.3 30.6 0.3 360.0
E-Waved-160-105-SSTR4 18,180.0 1,800.0 1,800.0 35.3 28.7 1.6 360.0
E-Waved-160-105-SSTR5 17,220.0 1,800.0 1,800.0 13.2 32.9 0.7 360.0
E-Waved-160-105-SSTR6 16,200.0 1,800.0 1,800.0 8.5 38.2 1.1 360.0
E-Waveless-160-45-SSTR1 10,140.0 1,800.0 1,800.0 18.3 26.8 0.0 360.0
E-Waveless-160-45-SSTR2 8,820.0 1,800.0 1,800.0 7.5 29.4 -0.7 360.0
E-Waveless-160-45-SSTR3 7,920.0 1,800.0 1,800.0 7.6 36.8 1.5 360.0
E-Waveless-160-45-SSTR4 9,840.0 1,800.0 1,800.0 17.7 31.3 1.2 360.0
E-Waveless-160-45-SSTR5 8,640.0 1,800.0 1,800.0 7.6 30.8 1.4 360.0
E-Waveless-160-45-SSTR6 7,740.0 1,800.0 1,800.0 8.5 41.7 2.3 360.0
E-Waveless-160-75-SSTR1 15,360.0 1,800.0 1,800.0 18.8 24.0 0.4 360.0
E-Waveless-160-75-SSTR2 14,220.0 1,800.0 1,800.0 11.4 24.6 1.3 360.0
E-Waveless-160-75-SSTR3 13,380.0 1,800.0 1,800.0 9.9 27.3 1.8 360.0
E-Waveless-160-75-SSTR4 14,760.0 1,800.0 1,800.0 21.1 25.8 3.5 360.0
E-Waveless-160-75-SSTR5 14,280.0 1,800.0 1,800.0 11.3 27.8 2.5 360.0
E-Waveless-160-75-SSTR6 13,320.0 1,800.0 1,800.0 7.7 31.4 1.8 360.0
E-Waveless-160-105-SSTR1 19,320.0 1,800.0 1,800.0 22.0 21.6 0.9 360.0
E-Waveless-160-105-SSTR2 16,980.0 1,800.0 1,800.0 15.9 22.2 1.0 360.0
E-Waveless-160-105-SSTR3 15,960.0 1,800.0 1,800.0 9.0 26.0 0.7 360.0
E-Waveless-160-105-SSTR4 18,660.0 1,800.0 1,800.0 19.3 23.7 -0.6 360.0
E-Waveless-160-105-SSTR5 16,860.0 1,800.0 1,800.0 12.1 26.5 1.1 360.0
E-Waveless-160-105-SSTR6 15,720.0 1,800.0 1,800.0 7.3 32.2 0.8 360.0
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Table 12 Results for Instances with 160 batches, 10 truck departures per staging lane

Branch & Price S MH

Linear Relaxation Integer

Instance LBLP UBLP CPULP LBIP UBIP CPUIP CPUBP %∆S CPUS %∆MH CPUMH

U-Waved-160-45-SSTR1 19,200.0 19,200.0 38.2 19,200.0 19,200.0 26.8 91.7 5.0 26.7 0.0 134.1
U-Waved-160-45-SSTR2 16,410.0 16,440.0 44.1 16,440.0 16,440.0 30.8 105.6 7.3 30.7 0.0 143.1
U-Waved-160-45-SSTR3 14,490.0 14,520.0 21.8 14,520.0 14,520.0 29.0 79.6 8.3 28.9 0.0 108.7
U-Waved-160-45-SSTR4 11,700.0 1,800.0 1,800.0 40.5 27.7 3.5 360.0
U-Waved-160-45-SSTR5 11,760.0 1,800.0 1,800.0 18.4 31.5 -0.5 360.0
U-Waved-160-45-SSTR6 10,800.0 1,800.0 1,800.0 5.0 36.7 0.6 360.0
U-Waved-160-75-SSTR1 24,480.0 24,480.0 7.7 24,480.0 24,480.0 22.3 52.2 4.2 22.2 0.0 78.1
U-Waved-160-75-SSTR2 21,510.0 21,540.0 39.1 21,540.0 21,540.0 23.2 85.3 6.7 23.1 0.0 97.4
U-Waved-160-75-SSTR3 19,590.0 19,620.0 11.7 19,620.0 19,620.0 25.8 63.3 5.2 25.8 0.0 102.6
U-Waved-160-75-SSTR4 16,800.0 16,800.0 333.4 16,800.0 16,800.0 26.1 385.3 20.4 25.8 0.0 263.1
U-Waved-160-75-SSTR5 15,120.0 1,800.0 1,800.0 21.0 26.7 0.0 360.0
U-Waved-160-75-SSTR6 14,080.0 14,220.0 218.0 14,100.0 14,220.0 1,552.0 1,800.0 18.1 30.0 -0.4 360.0
U-Waved-160-105-SSTR1 30,720.0 30,720.0 7.6 30,720.0 30,720.0 19.8 47.2 2.0 19.8 0.0 62.9
U-Waved-160-105-SSTR2 27,720.0 27,720.0 9.4 27,720.0 27,720.0 21.4 52.2 2.2 21.3 0.0 80.8
U-Waved-160-105-SSTR3 25,800.0 25,800.0 11.3 25,800.0 25,800.0 21.6 54.5 0.5 21.5 0.0 80.1
U-Waved-160-105-SSTR4 23,040.0 23,100.0 39.1 23,040.0 23,100.0 1,739.7 1,800.0 17.4 21.2 -0.3 97.0
U-Waved-160-105-SSTR5 20,340.0 20,340.0 469.0 20,340.0 20,340.0 23.4 515.5 20.6 23.2 0.0 360.0
U-Waved-160-105-SSTR6 19,890.0 19,980.0 706.2 19,920.0 19,980.0 1,067.8 1,800.0 0.9 26.1 0.0 360.0
U-Waveless-160-45-SSTR1 12,720.0 1,800.0 1,800.0 13.2 21.8 -0.5 360.0
U-Waveless-160-45-SSTR2 11,160.0 1,800.0 1,800.0 9.7 23.0 -3.3 360.0
U-Waveless-160-45-SSTR3 9,660.0 1,800.0 1,800.0 8.7 26.7 1.2 360.0
U-Waveless-160-45-SSTR4 11,820.0 1,800.0 1,800.0 21.8 24.1 3.0 360.0
U-Waveless-160-45-SSTR5 10,200.0 1,800.0 1,800.0 20.6 25.6 1.7 360.0
U-Waveless-160-45-SSTR6 9,180.0 1,800.0 1,800.0 12.4 31.6 1.3 360.0
U-Waveless-160-75-SSTR1 16,980.0 1,800.0 1,800.0 21.6 19.3 0.4 360.0
U-Waveless-160-75-SSTR2 14,280.0 1,800.0 1,800.0 14.3 19.7 0.4 360.0
U-Waveless-160-75-SSTR3 13,440.0 1,800.0 1,800.0 21.0 21.4 0.4 360.0
U-Waveless-160-75-SSTR4 17,040.0 1,800.0 1,800.0 24.3 20.2 0.0 360.0
U-Waveless-160-75-SSTR5 14,220.0 1,800.0 1,800.0 14.8 21.8 0.8 360.0
U-Waveless-160-75-SSTR6 13,200.0 1,800.0 1,800.0 18.6 24.5 0.5 360.0
U-Waveless-160-105-SSTR1 23,640.0 23,640.0 33.1 23,640.0 23,640.0 16.4 65.9 27.9 16.3 0.0 112.2
U-Waveless-160-105-SSTR2 19,440.0 19,440.0 202.5 19,440.0 19,440.0 16.8 236.0 25.3 16.7 0.0 315.1
U-Waveless-160-105-SSTR3 18,225.8 18,300.0 1,308.0 18,240.0 18,300.0 473.8 1,800.0 15.7 18.2 0.0 360.0
U-Waveless-160-105-SSTR4 23,640.0 23,640.0 82.5 23,640.0 23,640.0 19.3 120.9 13.2 19.2 0.0 186.9
U-Waveless-160-105-SSTR5 19,440.0 19,440.0 933.2 19,440.0 19,440.0 19.9 972.8 22.8 19.7 0.0 360.0
U-Waveless-160-105-SSTR6 18,204.3 18,240.0 1,208.9 18,240.0 18,240.0 23.8 1,256.5 14.5 23.7 0.0 360.0
E-Waved-160-45-SSTR1 15,300.0 15,420.0 530.2 15,300.0 15,420.0 1,243.7 1,800.0 12.8 26.1 -0.4 360.0
E-Waved-160-45-SSTR2 13,320.0 1,800.0 1,800.0 18.0 31.0 0.0 360.0
E-Waved-160-45-SSTR3 12,120.0 1,800.0 1,800.0 19.3 30.4 -0.5 360.0
E-Waved-160-45-SSTR4 11,880.0 1,800.0 1,800.0 27.8 27.3 -0.5 360.0
E-Waved-160-45-SSTR5 11,460.0 1,800.0 1,800.0 13.1 30.8 0.5 360.0
E-Waved-160-45-SSTR6 10,260.0 1,800.0 1,800.0 9.9 36.9 1.2 360.0
E-Waved-160-75-SSTR1 16,560.0 1,800.0 1,800.0 19.2 23.2 1.1 360.0
E-Waved-160-75-SSTR2 14,820.0 1,800.0 1,800.0 18.2 25.1 1.2 360.0
E-Waved-160-75-SSTR3 13,800.0 1,800.0 1,800.0 19.6 25.3 0.4 360.0
E-Waved-160-75-SSTR4 13,260.0 1,800.0 1,800.0 31.7 26.6 5.6 360.0
E-Waved-160-75-SSTR5 13,020.0 1,800.0 1,800.0 18.4 27.5 2.7 360.0
E-Waved-160-75-SSTR6 12,300.0 1,800.0 1,800.0 13.2 32.8 1.4 360.0
E-Waved-160-105-SSTR1 26,520.0 26,520.0 14.1 26,520.0 26,520.0 18.3 50.6 7.2 18.2 0.0 101.0
E-Waved-160-105-SSTR2 22,620.0 1,800.0 1,800.0 13.3 19.6 -0.3 201.8
E-Waved-160-105-SSTR3 20,940.0 1,800.0 1,800.0 9.7 20.8 0.0 360.0
E-Waved-160-105-SSTR4 21,660.0 1,800.0 1,800.0 20.2 19.8 0.3 183.0
E-Waved-160-105-SSTR5 19,920.0 1,800.0 1,800.0 14.5 22.1 1.2 360.0
E-Waved-160-105-SSTR6 19,020.0 1,800.0 1,800.0 9.8 22.6 0.0 360.0
E-Waveless-160-45-SSTR1 11,180.0 11,640.0 294.6 11,220.0 11,640.0 1,485.3 1,800.0 19.6 20.1 0.0 360.0
E-Waveless-160-45-SSTR2 9,540.0 1,800.0 1,800.0 20.1 21.4 5.4 360.0
E-Waveless-160-45-SSTR3 9,060.0 1,800.0 1,800.0 14.6 24.8 1.9 360.0
E-Waveless-160-45-SSTR4 11,100.0 1,800.0 1,800.0 34.6 22.6 0.5 360.0
E-Waveless-160-45-SSTR5 9,240.0 1,800.0 1,800.0 29.2 26.6 4.9 360.0
E-Waveless-160-45-SSTR6 8,760.0 1,800.0 1,800.0 19.2 29.1 2.7 360.0
E-Waveless-160-75-SSTR1 15,000.0 1,800.0 1,800.0 25.2 19.7 0.0 360.0
E-Waveless-160-75-SSTR2 12,720.0 1,800.0 1,800.0 20.8 20.0 0.9 360.0
E-Waveless-160-75-SSTR3 12,180.0 1,800.0 1,800.0 18.7 23.3 0.5 360.0
E-Waveless-160-75-SSTR4 14,640.0 1,800.0 1,800.0 29.1 21.6 -0.4 360.0
E-Waveless-160-75-SSTR5 12,660.0 1,800.0 1,800.0 24.2 23.0 1.9 360.0
E-Waveless-160-75-SSTR6 11,760.0 1,800.0 1,800.0 15.3 26.5 0.5 360.0
E-Waveless-160-105-SSTR1 22,260.0 1,800.0 1,800.0 16.7 15.4 0.0 360.0
E-Waveless-160-105-SSTR2 18,900.0 1,800.0 1,800.0 15.9 16.4 0.6 360.0
E-Waveless-160-105-SSTR3 18,000.0 1,800.0 1,800.0 13.0 17.4 0.7 360.0
E-Waveless-160-105-SSTR4 21,360.0 1,800.0 1,800.0 19.7 17.2 0.3 360.0
E-Waveless-160-105-SSTR5 18,840.0 1,800.0 1,800.0 15.6 18.0 0.6 360.0
E-Waveless-160-105-SSTR6 17,820.0 1,800.0 1,800.0 8.4 19.8 0.7 360.0
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Table 13 Results for Instances with 160 batches, 20 truck departures per staging lane

Branch & Price S MH

Linear Relaxation Integer

Instance LBLP UBLP CPULP LBIP UBIP CPUIP CPUBP %∆S CPUS %∆MH CPUMH

U-Waved-160-45-SSTR1 13,920.0 13,920.0 30.9 13,920.0 13,920.0 18.6 68.1 10.8 18.5 0.0 91.7
U-Waved-160-45-SSTR2 13,200.0 13,200.0 4.2 13,200.0 13,200.0 20.9 46.0 0.5 20.9 0.0 88.7
U-Waved-160-45-SSTR3 12,810.0 12,840.0 3.5 12,840.0 12,840.0 21.0 45.5 2.3 21.0 -0.5 73.2
U-Waved-160-45-SSTR4 11,340.0 1,800.0 1,800.0 40.7 21.3 -0.5 180.0
U-Waved-160-45-SSTR5 10,860.0 1,800.0 1,800.0 18.8 23.1 2.2 360.0
U-Waved-160-45-SSTR6 10,397.1 10,620.0 53.7 10,440.0 10,620.0 1,720.1 1,800.0 11.3 26.1 0.0 194.7
U-Waved-160-75-SSTR1 20,940.0 20,940.0 12.9 20,940.0 20,940.0 16.7 46.1 8.3 16.6 0.0 85.0
U-Waved-160-75-SSTR2 19,320.0 19,320.0 3.2 19,320.0 19,320.0 19.2 41.4 7.5 19.1 0.0 56.9
U-Waved-160-75-SSTR3 18,600.0 18,660.0 9.7 18,600.0 18,660.0 1,773.2 1,800.0 4.2 17.1 0.0 84.1
U-Waved-160-75-SSTR4 16,800.0 16,860.0 421.4 16,800.0 16,860.0 1,360.2 1,800.0 22.8 18.4 -0.4 360.0
U-Waved-160-75-SSTR5 15,840.0 1,800.0 1,800.0 14.8 19.5 -0.4 360.0
U-Waved-160-75-SSTR6 15,300.0 1,800.0 1,800.0 17.3 20.1 0.4 360.0
U-Waved-160-105-SSTR1 26,040.0 26,040.0 6.0 26,040.0 26,040.0 14.7 35.3 11.3 14.7 0.0 55.0
U-Waved-160-105-SSTR2 23,760.0 23,760.0 14.4 23,760.0 23,760.0 16.1 46.5 8.1 16.0 0.0 48.4
U-Waved-160-105-SSTR3 23,640.0 23,640.0 3.4 23,640.0 23,640.0 16.1 35.5 4.1 16.0 0.0 52.9
U-Waved-160-105-SSTR4 22,440.0 22,440.0 17.0 22,440.0 22,440.0 15.7 48.3 29.1 15.6 0.0 97.6
U-Waved-160-105-SSTR5 20,820.0 20,820.0 175.1 20,820.0 20,820.0 17.2 209.3 11.2 17.0 0.0 221.6
U-Waved-160-105-SSTR6 20,200.0 20,220.0 826.7 20,220.0 20,220.0 19.4 865.3 7.7 19.3 0.0 360.0
U-Waveless-160-45-SSTR1 10,860.0 1,800.0 1,800.0 24.3 18.3 0.0 360.0
U-Waveless-160-45-SSTR2 10,260.0 1,800.0 1,800.0 19.9 19.8 0.0 360.0
U-Waveless-160-45-SSTR3 9,660.0 1,800.0 1,800.0 18.6 20.4 0.0 360.0
U-Waveless-160-45-SSTR4 11,400.0 1,800.0 1,800.0 31.1 20.1 -3.3 360.0
U-Waveless-160-45-SSTR5 10,380.0 1,800.0 1,800.0 20.2 21.9 2.3 360.0
U-Waveless-160-45-SSTR6 8,940.0 1,800.0 1,800.0 16.1 23.3 2.6 360.0
U-Waveless-160-75-SSTR1 16,200.0 16,200.0 1,298.1 16,200.0 16,200.0 15.9 1,329.6 27.4 15.6 0.7 360.0
U-Waveless-160-75-SSTR2 14,940.0 1,800.0 1,800.0 25.3 17.4 1.2 360.0
U-Waveless-160-75-SSTR3 14,400.0 1,800.0 1,800.0 19.6 17.4 0.8 360.0
U-Waveless-160-75-SSTR4 15,240.0 1,800.0 1,800.0 41.7 17.5 1.9 360.0
U-Waveless-160-75-SSTR5 14,220.0 1,800.0 1,800.0 23.6 18.8 2.5 360.0
U-Waveless-160-75-SSTR6 13,380.0 1,800.0 1,800.0 19.3 20.7 0.4 360.0
U-Waveless-160-105-SSTR1 22,800.0 22,800.0 18.9 22,800.0 22,800.0 13.3 45.4 31.3 13.2 0.3 88.0
U-Waveless-160-105-SSTR2 20,220.0 20,220.0 24.4 20,220.0 20,220.0 14.4 53.1 26.7 14.3 0.0 73.8
U-Waveless-160-105-SSTR3 19,350.0 19,380.0 43.1 19,380.0 19,380.0 14.6 72.2 11.5 14.5 0.0 125.7
U-Waveless-160-105-SSTR4 20,340.0 1,800.0 1,800.0 37.2 14.8 0.9 360.0
U-Waveless-160-105-SSTR5 18,840.0 1,800.0 1,800.0 25.8 15.7 0.6 360.0
U-Waveless-160-105-SSTR6 17,892.0 17,940.0 1,125.4 17,940.0 17,940.0 17.9 1,161.0 9.4 17.8 0.0 360.0
E-Waved-160-45-SSTR1 13,020.0 1,800.0 1,800.0 11.1 20.1 -5.9 360.0
E-Waved-160-45-SSTR2 11,640.0 1,800.0 1,800.0 17.5 20.8 1.0 360.0
E-Waved-160-45-SSTR3 11,100.0 1,800.0 1,800.0 14.6 21.0 2.1 360.0
E-Waved-160-45-SSTR4 10,800.0 1,800.0 1,800.0 38.3 21.8 5.3 360.0
E-Waved-160-45-SSTR5 10,020.0 1,800.0 1,800.0 21.6 24.3 1.8 360.0
E-Waved-160-45-SSTR6 9,600.0 1,800.0 1,800.0 16.3 26.2 0.6 360.0
E-Waved-160-75-SSTR1 17,760.0 17,760.0 88.8 17,760.0 17,760.0 17.9 124.5 13.9 17.8 0.0 163.6
E-Waved-160-75-SSTR2 16,260.0 16,260.0 230.8 16,260.0 16,260.0 18.7 268.2 17.0 18.6 0.4 221.8
E-Waved-160-75-SSTR3 15,900.0 15,900.0 60.5 15,900.0 15,900.0 19.2 98.8 14.7 19.1 0.4 360.0
E-Waved-160-75-SSTR4 15,780.0 1,800.0 1,800.0 25.9 19.3 3.3 360.0
E-Waved-160-75-SSTR5 15,420.0 1,800.0 1,800.0 15.6 19.8 0.8 360.0
E-Waved-160-75-SSTR6 15,060.0 1,800.0 1,800.0 10.4 23.1 0.0 360.0
E-Waved-160-105-SSTR1 21,600.0 21,660.0 46.3 21,600.0 21,660.0 1,738.2 1,800.0 6.4 15.6 0.0 115.6
E-Waved-160-105-SSTR2 19,560.0 19,620.0 108.6 19,560.0 19,620.0 1,675.3 1,800.0 10.7 16.1 0.0 155.6
E-Waved-160-105-SSTR3 18,960.0 1,800.0 1,800.0 9.8 17.5 0.0 360.0
E-Waved-160-105-SSTR4 18,780.0 1,800.0 1,800.0 18.2 17.4 0.6 360.0
E-Waved-160-105-SSTR5 17,640.0 1,800.0 1,800.0 14.6 17.9 0.7 360.0
E-Waved-160-105-SSTR6 17,220.0 1,800.0 1,800.0 8.0 19.2 0.3 360.0
E-Waveless-160-45-SSTR1 11,820.0 1,800.0 1,800.0 21.8 18.4 -1.0 360.0
E-Waveless-160-45-SSTR2 10,560.0 1,800.0 1,800.0 13.1 19.0 0.6 360.0
E-Waveless-160-45-SSTR3 9,600.0 1,800.0 1,800.0 21.9 20.1 2.4 360.0
E-Waveless-160-45-SSTR4 10,560.0 1,800.0 1,800.0 40.9 21.4 0.0 360.0
E-Waveless-160-45-SSTR5 10,140.0 1,800.0 1,800.0 17.2 21.2 1.7 360.0
E-Waveless-160-45-SSTR6 9,120.0 1,800.0 1,800.0 21.1 23.4 2.6 360.0
E-Waveless-160-75-SSTR1 16,920.0 17,400.0 128.3 16,920.0 17,400.0 1,656.3 1,800.0 15.9 15.4 0.0 360.0
E-Waveless-160-75-SSTR2 15,060.0 1,800.0 1,800.0 13.1 16.2 0.0 360.0
E-Waveless-160-75-SSTR3 14,100.0 1,800.0 1,800.0 18.3 16.6 0.0 360.0
E-Waveless-160-75-SSTR4 16,980.0 1,800.0 1,800.0 22.3 17.5 0.0 360.0
E-Waveless-160-75-SSTR5 14,700.0 1,800.0 1,800.0 14.3 18.9 0.4 360.0
E-Waveless-160-75-SSTR6 13,740.0 1,800.0 1,800.0 11.8 20.2 0.4 360.0
E-Waveless-160-105-SSTR1 22,620.0 22,620.0 31.7 22,620.0 22,620.0 14.8 61.3 10.3 14.8 0.0 137.7
E-Waveless-160-105-SSTR2 19,950.0 19,980.0 154.5 19,980.0 19,980.0 14.9 184.3 9.0 14.9 0.0 360.0
E-Waveless-160-105-SSTR3 19,106.4 19,140.0 1,217.6 19,140.0 19,140.0 15.5 1,248.5 6.6 15.4 0.0 360.0
E-Waveless-160-105-SSTR4 20,700.0 20,700.0 17.6 20,700.0 20,700.0 16.1 49.7 15.9 16.0 0.0 65.4
E-Waveless-160-105-SSTR5 18,300.0 1,800.0 1,800.0 14.4 16.2 0.3 360.0
E-Waveless-160-105-SSTR6 17,993.2 18,000.0 532.2 18,000.0 18,000.0 19.0 570.1 6.7 18.9 0.0 360.0

Appendix I: Including different break time structures in solution procedures

The shift structure to include breaks as discussed in Section 3 is very flexible, whereas there might be other

break types as discussed in Appendix D. This is actually the situation in our case study as discussed in

Section 6.3, where there are three break types: two 15-minute breaks after 2 hours and 6 hours of starting
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the shift and one 30-minute break after 3.5 hours of starting the shift. To find a solution to the OPSP with

the metaheuristic where these new break structures are included, we can directly include the constraints as

formulated in Appendix D to the problem formulation. In particular, Φ = {1,2,3} where break type 1 and 2

indicate the two shorter breaks and break type 3 indicates the longer break. Consequently, the duration of

the each break type is given by l1b = l2b = 0.25 and l3b = 0.5, whereas the start time of each break type is given

by r1 = 2, r2 = 5 and r3 = 3.5. In the case where the start time of the breaks can have a 15-minute flexibility

(i.e., scheduled at most 15 minutes earlier or later), we indicate the flexibility in the timing of the breaks by

Ψ, which is set to 15 minutes (or Ψ = 0.25 hours). When there is no such flexibility (i.e., in the scenarios 1,

5, 6 and 7), the value of Ψ equals zero.

To use the metaheuristic, we have to reformulate the reduced problem to verify whether two schedules can

be combined for one order picker (as formulated in Appendix G). Let us first redefine some of the decision

variables:

xik is 1 if batch i ∈ B is scheduled to be picked at the kth position in the shift for the order
picker, where k ∈K, else 0

yφk is 1 if a break φ∈Φ is scheduled at the kth position in the shift for the order picker, where
k ∈K, else 0

sj is 1 if the order picker starts the shift at the beginning of period j ∈ S, else 0
ej is 1 if the order picker ends the shift at the end of period j ∈E, else 0
ck completion time of the task scheduled at the kth position in the shift of the order picker,

where k ∈K
m amount of time for which the order picker is compensated

The reduced problem (RP) of the OPSP for the case study is then reformulated as a MILP model as

follows:

RPCase:

minm (92)

subject to ∑
i∈B

xik +
∑
φ∈Φ

yφk ≤ 1 ∀k ∈K (93)∑
k∈K

xik = 1 ∀i∈B (94)∑
j∈J\S

sj +
∑
j∈J\E

ej = 0 (95)

c1 ≥
(∑
j∈S

(j− 1)sj

)
l+
∑
i∈B

tixi1 +
∑
φ∈Φ

lφb y
φ
k (96)

ck ≥ ck−1 +
∑
i∈B

tixik +
∑
φ∈Φ

lφb y
φ
k ∀k ∈K \ {1} (97)∑

j∈E

(jej)l≥ ck̄ (98)

ck +M(1−xik)≥ ri ∀i∈B,k ∈K (99)
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ck−M(1−xik)≤ di ∀i∈B,k ∈K (100)∑
k∈K

y1
k =

∑
k∈K

y3
k = 1 (101)

M
∑
k∈K

y2
k ≥m− 360 (102)

ck +M(1− yφk )−
(∑
j∈S

(j− 1)sj

)
l≥ rφ−Ψ ∀k ∈K,φ∈Φ (103)

ck +M(1− yφk )−
(∑
j∈S

(j− 1)sj

)
l≤ rφ + Ψ ∀k ∈K,φ∈Φ (104)∑

i∈B

xik−1 +
∑
φ∈Φ

yφk ≥
∑
i∈B

xik +
∑
φ∈R

yφk ∀k ∈K \ {1} (105)

(
∑
j∈E

jej −
∑
j∈S

(j− 1)sj)l≤m (106)

ck ≥ 0 ∀k ∈K (107)

xik ∈ {0,1} ∀i∈B,k ∈K (108)

yφk ∈ {0,1} ∀k ∈K,φ∈Φ (109)

sj , ej ∈ {0,1} ∀j ∈ J (110)

Tmin ≤m≤ Tmax (111)

Most of the constraints in this reformulation are the same as the original reduced problem formulation

in Appendix G. Here, we only explain the constraints that are different. Constraint (101) enforces that the

first short break and the long break have to be scheduled, whereas constraint (102) indicates that the second

short break only has to be scheduled if the order picker is employed for more than 6 hours. Constraints (103)

and (104) regulate the start and completion times of individual breaks according to the flexibility Ψ for the

break times.

Appendix J: Detailed result of Section 6.3

The schedules resulting from the OPSP on Day 1 of the normal week are illustrated in Figure 12 for the

scenarios where Tmin equals 6 hours. The total number of hours that the order pickers are compensated

for is indicated in Table 14, whereas as the number of scheduled order pickers is presented in Table 15.

When dividing these two numbers for each instance, we obtain the average shift length. The number of order

pickers who are compensated for exactly Tmin time unit is included in Table 16. A summary of these results

is included in Figure 8.
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(a) Schedule scenario 1: fixed break
times, 3 start times

(b) Schedule scenario 2: 15-minute flex-
ible break times, 3 start times

(c) Schedule scenario 5: fixed break
times, 4 start times

(d) Schedule scenario 11: completely
flexible break times, 3 start times

Figure 12 Gantt charts illustrating the scheduling of order picking tasks (in grey) and breaks (in black) for the

four scenarios where Tmin = 6 hours

Table 14 Number of hours that scheduled order pickers need to be compensated

for per scenario
Scenario

Week Day 1 2 3 4 5 6 7 8 9 10 11 12
Normal 1 897 800 851 916 813 828 910 779 791 831 783 750

2 933 839 899 984 928 996 1,056 838 885 912 861 844
3 1,071 991 1,023 1,091 1,074 1,090 1,163 956 1,002 1,072 970 932
4 1,004 915 966 1,010 958 1,023 1,064 892 917 1,010 899 870
5 1,131 1,021 1,053 1,123 1,069 1,119 1,144 994 1,017 1,049 971 971
6 1,297 1,177 1,221 1,264 1,221 1,293 1,315 1,144 1,166 1,203 1,149 1,114
7 1,283 1,158 1,213 1,274 1,262 1,339 1,455 1,148 1,161 1,274 1,170 1,146

Busy 1 783 726 758 816 753 819 861 705 712 777 706 686
2 929 835 835 879 854 854 906 811 830 830 823 779
3 990 901 901 967 921 945 945 860 873 876 878 829
4 1,063 971 1,013 1,014 1,006 1,054 1,090 955 977 975 972 945
5 1,544 1,420 1,495 1,495 1,454 1,454 1,574 1,367 1,392 1,398 1,435 1,393
6 1,713 1,625 1,639 1,668 1,669 1,744 1,730 1,584 1,619 1,651 1,620 1,612
7 1,412 1,288 1,375 1,375 1,374 1,391 1,447 1,256 1,280 1,350 1,293 1,239

Appendix K: Preemptive breaks

The problem formulation in Section 3 does not allow preemptive order picking, i.e., the order picking of a

batch has to be completed before the order picker can take a break. In this section, we study the operational

environment where the items of a batch can be partially picked before the order picker takes a break. We

can derive an exact algorithm for the preemptive scheduling case after making the necessary changes to the

resource extension functions of the pricing problem for the non-preemptive problem presented in Section 3.

All other components of the pricing problem (e.g., the resources, their definition, feasibility windows and

dominance rules) remain the same as in the non-preemptive scheduling problem.
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Table 15 Number of scheduled order pickers per scenario

Scenario
Week Day 1 2 3 4 5 6 7 8 9 10 11 12

Normal 1 115 104 108 111 111 105 110 106 104 101 110 105
2 125 117 118 120 128 132 129 115 116 112 117 124
3 140 135 133 134 144 139 140 131 132 131 133 132
4 133 123 127 123 132 133 130 123 122 123 126 123
5 147 137 136 136 139 144 138 134 133 127 135 135
6 167 153 155 153 161 166 157 151 151 146 154 150
7 170 153 155 154 170 171 174 155 147 154 156 151

Busy 1 101 96 97 98 100 102 103 97 91 92 96 93
2 111 110 103 105 109 105 108 106 102 100 105 104
3 120 114 112 115 117 120 111 110 109 105 109 109
4 131 124 126 121 128 130 130 122 121 117 126 124
5 185 175 182 177 188 176 186 172 173 166 173 176
6 206 199 199 197 204 206 201 196 197 195 195 201
7 172 160 167 165 170 170 170 161 159 163 159 162

Table 16 Number of scheduled order pickers that get

compensated for Tmin time units per scenario

Scenario
Week Day 1 2 3 4 5 6 7 8 9 10 11 12

Normal 1 24 22 48 83 37 46 80 18 42 64 51 41
2 41 47 64 96 50 76 105 42 72 94 47 59
3 30 43 66 115 52 61 97 48 65 98 45 48
4 36 40 76 97 52 71 106 49 68 91 49 49
5 39 45 67 101 35 71 98 53 72 90 52 52
6 32 27 59 113 44 71 98 33 68 103 28 35
7 56 44 70 112 62 81 111 40 45 83 52 35

Busy 1 28 28 46 66 36 35 66 14 31 54 41 33
2 8 21 32 66 25 31 66 29 39 62 18 21
3 13 20 37 68 24 36 54 27 39 65 21 27
4 12 24 38 75 28 38 80 26 36 69 31 29
5 13 25 44 98 37 39 100 21 40 88 25 28
6 20 22 48 105 30 30 79 32 54 96 27 21
7 19 22 32 110 27 39 83 21 37 102 30 32

The resource extension functions without breaks are given by the same functions f(·) as specified in

Section 4.2 4.2. The only difference is in extension functions with breaks. A distinction has to be made

between two conditions. First, if Tworki + tj is greater than Tbreak, then batch j cannot be completed before

the order picker takes a break. The portion of batch j that can be completed before the break is scheduled

has a duration of Tworki + tj−Tbreak time units and the remaining items of the batch can be picked after the

break. The resource extension functions under this first condition (denoted as g′(·)) are defined as:

T timej = g′time(Ti, j) := max{T timei + tj + lb, rj} (112)

T durj = g′dur(Ti, j) := max{T duri + tj + lb, rj −T starti } (113)

Tworkj = g′work(Ti, j) := Tworki + tj −Tbreak (114)

T brkj = g′brk(Ti, j) := min{dj −Tworki − tj +Tbreak,∞} (115)

Under the second condition, if Tworki + tj is less than or equal to Tbreak, then the complete batch can be

picked before the order picker takes a break. The resource extension functions under this second condition

are denoted by g′′(·) and defined as follows:

T timej = g′′time(Ti, j) := max{T timei + tj + lb, rj} (116)

T durj = g′′dur(Ti, j) := max{T duri + tj + lb, rj −T starti } (117)
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Tworkj = g′′work(Ti, j) := 0 (118)

T brkj = g′′brk(Ti, j) := min{dj ,∞} (119)

For a numerical test bed with instances of 40 batches and 5 or 10 truck departures per staging lane, we

present the performance of the branch-and-price algorithm when preemptive order scheduling is allowed in

Table 17 and 18, respectively. Note that the counterparts with non-preemptive order scheduling are presented

in Table 6 and 7, respectively. The last column in these two tables indicates the relative cost increase of using

preemption against non-preemption, which is expressed as %∆P = ((zP − zNP )/zNP )× 100, where zP and

zNP are the best branch-and-price solutions for preemtive and non-preemptive order scheduling, respectively.

The results illustrate the adaptability of our solution framework. For three of the instances, the algorithm

for preemptive order picking was able to generate only inferior solutions compared to the algorithm for

non-preemptive order picking within the limited run time. Excluding these three instances, the cost savings

of preemptive order scheduling are on average 0.4% compared to non-preemptive order scheduling, with the

largest cost savings of 8.3% However, the problem formulation with preemptive order scheduling assumes that

breaks occur instantaneously and they ignore the time it takes to travel between the location of the last picked

item in the pick tour and the location where the order picker takes a break. A more accurate approach to

include preemptive order picking would be to include this extra travel time. Consequently, preemptive order

scheduling can be more expensive than non-preemptive order scheduling. Therefore, studying preemptive

order scheduling can have a high practical and academic relevance but is beyond the scope of our work.
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Table 17 Results for Instances with 40 batches, 5 truck departures per staging

lane, preemptive order picking

Branch & Price

Linear Relaxation Integer

Instance LBLP UBLP CPULP LBIP UBIP CPUIP CPUBP %∆P

U-Waved-40-45-SSTR1 4,480.0 4,800.0 4.7 4,500.0 4,800.0 1,793.3 1,800.0 0.0
U-Waved-40-45-SSTR2 4,200.0 4,440.0 3.4 4,200.0 4,440.0 1,793.0 1,800.0 0.0
U-Waved-40-45-SSTR3 4,152.0 4,200.0 2.1 4,200.0 4,200.0 2.8 7.7 0.0
U-Waved-40-45-SSTR4 4,480.0 4,800.0 4.4 4,500.0 4,800.0 1,793.4 1,800.0 0.0
U-Waved-40-45-SSTR5 3,480.0 3,660.0 148.4 3,480.0 3,660.0 1,649.0 1,800.0 0.0
U-Waved-40-45-SSTR6 2,685.0 2,760.0 17.2 2,700.0 2,700.0 1,636.2 1,656.2 0.0
U-Waved-40-75-SSTR1 4,980.0 4,980.0 1.8 4,980.0 4,980.0 2.1 6.0 0.0
U-Waved-40-75-SSTR2 4,740.0 4,740.0 1.4 4,740.0 4,740.0 2.4 6.2 0.0
U-Waved-40-75-SSTR3 4,660.0 4,740.0 1.2 4,680.0 4,680.0 8.0 11.5 0.0
U-Waved-40-75-SSTR4 4,800.0 4,800.0 2.0 4,800.0 4,800.0 2.3 6.6 0.0
U-Waved-40-75-SSTR5 3,840.0 3,840.0 40.0 3,840.0 3,840.0 2.4 44.7 0.0
U-Waved-40-75-SSTR6 3,400.0 3,420.0 6.1 3,420.0 3,420.0 2.4 10.8 0.0
U-Waved-40-105-SSTR1 5,600.0 5,760.0 1.1 5,640.0 5,760.0 1,796.9 1,800.0 0.0
U-Waved-40-105-SSTR2 5,280.0 5,400.0 0.8 5,280.0 5,400.0 1,797.0 1,800.0 0.0
U-Waved-40-105-SSTR3 5,160.0 5,160.0 0.4 5,160.0 5,160.0 2.5 5.5 0.0
U-Waved-40-105-SSTR4 5,320.0 5,460.0 6.9 5,340.0 5,460.0 1,790.7 1,800.0 -1.1
U-Waved-40-105-SSTR5 4,936.0 5,040.0 14.3 4,980.0 5,040.0 1,783.0 1,800.0 1.2
U-Waved-40-105-SSTR6 4,771.2 4,800.0 3.5 4,800.0 4,800.0 2.8 8.9 0.0

U-Waveless-40-45-SSTR1 3,040.0 3,360.0 7.5 3,060.0 3,360.0 1,790.4 1,800.0 0.0
U-Waveless-40-45-SSTR2 2,360.0 2,520.0 14.1 2,400.0 2,520.0 1,783.9 1,800.0 0.0
U-Waveless-40-45-SSTR3 2,181.2 2,280.0 27.0 2,220.0 2,280.0 1,770.7 1,800.0 0.0
U-Waveless-40-45-SSTR4 2,640.0 2,940.0 335.7 2,640.0 2,940.0 1,462.0 1,800.0 0.0
U-Waveless-40-45-SSTR5 2,280.0 2,340.0 480.6 2,280.0 2,340.0 1,317.1 1,800.0 0.0
U-Waveless-40-45-SSTR6 2,168.2 2,280.0 29.7 2,220.0 2,280.0 1,767.9 1,800.0 0.0
U-Waveless-40-75-SSTR1 3,960.0 3,960.0 16.1 3,960.0 3,960.0 1.7 19.5 -8.3
U-Waveless-40-75-SSTR2 3,505.3 3,600.0 59.8 3,540.0 3,540.0 383.4 445.0 0.0
U-Waveless-40-75-SSTR3 3,360.0 3,420.0 11.4 3,360.0 3,360.0 986.5 1,000.3 0.0
U-Waveless-40-75-SSTR4 3,720.0 3,900.0 129.7 3,720.0 3,900.0 1,668.3 1,800.0 0.0
U-Waveless-40-75-SSTR5 3,441.1 3,540.0 268.4 3,480.0 3,540.0 1,529.6 1,800.0 0.0
U-Waveless-40-75-SSTR6 3,281.1 3,360.0 18.0 3,300.0 3,360.0 1,779.9 1,800.0 0.0
U-Waveless-40-105-SSTR1 6,830.0 6,840.0 0.7 6,840.0 6,840.0 1.6 3.8 -5.0
U-Waveless-40-105-SSTR2 5,382.9 5,400.0 0.6 5,400.0 5,400.0 1.7 3.9 -1.1
U-Waveless-40-105-SSTR3 4,740.0 4,800.0 0.8 4,740.0 4,800.0 1,797.5 1,800.0 0.0
U-Waveless-40-105-SSTR4 5,760.0 5,760.0 3.5 5,760.0 5,760.0 1.9 7.2 0.0
U-Waveless-40-105-SSTR5 5,040.0 5,040.0 2.2 5,040.0 5,040.0 1.9 6.0 0.0
U-Waveless-40-105-SSTR6 4,620.0 4,620.0 1.5 4,620.0 4,620.0 2.1 5.7 0.0

E-Waved-40-45-SSTR1 4,140.0 4,380.0 6.5 4,140.0 4,380.0 1,791.5 1,800.0 0.0
E-Waved-40-45-SSTR2 3,769.7 3,960.0 3.5 3,780.0 3,960.0 1,793.0 1,800.0 0.0
E-Waved-40-45-SSTR3 3,718.3 3,780.0 2.3 3,720.0 3,780.0 1,794.5 1,800.0 0.0
E-Waved-40-45-SSTR4 4,080.0 4,320.0 5.6 4,080.0 4,320.0 1,792.2 1,800.0 0.0
E-Waved-40-45-SSTR5 3,156.6 3,360.0 1,069.5 3,180.0 3,360.0 727.7 1,800.0 0.0
E-Waved-40-45-SSTR6 2,464.5 2,580.0 55.8 2,520.0 2,580.0 1,741.1 1,800.0 2.4
E-Waved-40-75-SSTR1 5,580.0 5,880.0 1.5 5,580.0 5,880.0 1,796.3 1,800.0 0.0
E-Waved-40-75-SSTR2 5,010.0 5,160.0 1.2 5,040.0 5,160.0 1,796.5 1,800.0 -1.1
E-Waved-40-75-SSTR3 5,000.0 5,040.0 3.4 5,040.0 5,040.0 2.3 8.1 -1.2
E-Waved-40-75-SSTR4 5,460.0 5,760.0 4.7 5,460.0 5,760.0 1,793.2 1,800.0 0.0
E-Waved-40-75-SSTR5 4,530.0 4,620.0 5.1 4,560.0 4,620.0 1,792.6 1,800.0 0.0
E-Waved-40-75-SSTR6 4,260.0 4,260.0 2.1 4,260.0 4,260.0 2.3 6.6 0.0
E-Waved-40-105-SSTR1 5,460.0 5,460.0 0.4 5,460.0 5,460.0 2.2 4.8 0.0
E-Waved-40-105-SSTR2 4,980.0 4,980.0 0.6 4,980.0 4,980.0 2.5 5.5 0.0
E-Waved-40-105-SSTR3 4,860.0 4,860.0 0.5 4,860.0 4,860.0 2.7 5.8 0.0
E-Waved-40-105-SSTR4 4,800.0 4,800.0 3.2 4,800.0 4,800.0 2.4 7.9 0.0
E-Waved-40-105-SSTR5 3,846.3 3,900.0 727.3 3,900.0 3,900.0 2.9 732.9 0.0
E-Waved-40-105-SSTR6 3,442.2 3,480.0 162.1 3,480.0 3,480.0 3.1 168.2 0.0

E-Waveless-40-45-SSTR1 2,920.0 2,940.0 163.1 2,940.0 2,940.0 1.9 166.9 0.0
E-Waveless-40-45-SSTR2 2,352.3 2,520.0 165.9 2,400.0 2,400.0 1,060.3 1,228.2 0.0
E-Waveless-40-45-SSTR3 2,099.1 2,160.0 27.4 2,100.0 2,160.0 1,770.6 1,800.0 0.0
E-Waveless-40-45-SSTR4 2,720.0 2,940.0 691.1 2,760.0 2,940.0 1,106.9 1,800.0 0.0
E-Waveless-40-45-SSTR5 2,349,9 2,520.0 168.1 2,400.0 2,460.0 1,641.1 1,800.0 2.5
E-Waveless-40-45-SSTR6 2,111.8 2,160.0 23.8 2,160.0 2,160.0 2.6 28.8 0.0
E-Waveless-40-75-SSTR1 5,070.0 5,340.0 5.0 5,100.0 5,340.0 1,793.3 1,800.0 0.0
E-Waveless-40-75-SSTR2 4,120.0 4,260.0 128.9 4,140.0 4,260.0 1,669.4 1,800.0 0.0
E-Waveless-40-75-SSTR3 3,983.4 4,020.0 25.3 4,020.0 4,020.0 1.8 28.9 0.0
E-Waveless-40-75-SSTR4 4,279.1 4,380.0 535.8 4,320.0 4,380.0 1,262.5 1,800.0 0.0
E-Waveless-40-75-SSTR5 4,035.0 4,080.0 267.0 4,080.0 4,080.0 2.1 271.0 0.0
E-Waveless-40-75-SSTR6 3,925.7 3,960.0 19.3 3,960.0 3,960.0 2.2 23.7 0.0
E-Waveless-40-105-SSTR1 5,280.0 5,280.0 0.6 5,280.0 5,280.0 1.6 3.7 0.0
E-Waveless-40-105-SSTR2 3,960.0 3,960.0 4.5 3,960.0 3,960.0 1.6 7.7 0.0
E-Waveless-40-105-SSTR3 3,402.0 3,480.0 8.7 3,420.0 3,480.0 1,789.6 1,800.0 0.0
E-Waveless-40-105-SSTR4 4,800.0 4,800.0 2.8 4,800.0 4,800.0 1.9 6.5 0.0
E-Waveless-40-105-SSTR5 3,900.0 3,900.0 51.9 3,900.0 3,900.0 1.9 55.6 0.0
E-Waveless-40-105-SSTR6 3,399.4 3,480.0 6.5 3,420.0 3,480.0 1,791.6 1,800.0 0.0
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Table 18 Results for Instances with 40 batches, 10 truck departures per staging

lane, preemptive order picking

Branch & Price for Preemptive Order Picking

Linear Relaxation Integer

Instance LBLP UBLP CPULP LBIP UBIP CPUIP CPUBP %∆P

U-Waved-40-45-SSTR1 4,800.00 4,800.00 4 4,800.00 4,800.00 1.8 7.6 0.0
U-Waved-40-45-SSTR2 4,140.00 4,140.00 0.4 4,140.00 4,140.00 2.1 4.6 0.0
U-Waved-40-45-SSTR3 3,660.00 3,660.00 0.6 3,660.00 3,660.00 2 4.6 0.0
U-Waved-40-45-SSTR4 2,880.00 3,360.00 21.8 2,880.00 2,880.00 192 216.1 0.0
U-Waved-40-45-SSTR5 2,700.00 3,000.00 70.6 2,700.00 2,700.00 1,115.10 1,185.70 -4.3
U-Waved-40-45-SSTR6 2,640.00 2,760.00 4.1 2,640.00 2,760.00 1,793.50 1,800.00 0.0
U-Waved-40-75-SSTR1 6,240.00 6,240.00 0.2 6,240.00 6,240.00 1.5 3.2 0.0
U-Waved-40-75-SSTR2 5,400.00 5,400.00 0.6 5,400.00 5,400.00 1.7 4 0.0
U-Waved-40-75-SSTR3 4,920.00 4,920.00 0.4 4,920.00 4,920.00 1.7 3.8 0.0
U-Waved-40-75-SSTR4 4,320.00 4,320.00 1.6 4,320.00 4,320.00 1.7 4.9 0.0
U-Waved-40-75-SSTR5 3,780.00 3,780.00 4.5 3,780.00 3,780.00 1.8 8 0.0
U-Waved-40-75-SSTR6 3,630.00 3,660.00 3.3 3,660.00 3,660.00 2.1 7.4 0.0
U-Waved-40-105-SSTR1 7,680.00 7,680.00 0.1 7,680.00 7,680.00 1.4 2.8 0.0
U-Waved-40-105-SSTR2 6,960.00 6,960.00 0.2 6,960.00 6,960.00 1.5 3.2 0.0
U-Waved-40-105-SSTR3 6,480.00 6,480.00 0.2 6,480.00 6,480.00 1.5 3.2 0.0
U-Waved-40-105-SSTR4 5,760.00 5,760.00 0.9 5,760.00 5,760.00 1.5 3.9 0.0
U-Waved-40-105-SSTR5 5,190.00 5,220.00 1.1 5,220.00 5,220.00 1.7 4.5 0.0
U-Waved-40-105-SSTR6 5,040.00 5,040.00 0.3 5,040.00 5,040.00 2 4.2 0.0

E-Waved-40-45-SSTR1 4,000.00 4,320.00 2.9 4,020.00 4,320.00 1,795.20 1,800.00 0.0
E-Waved-40-45-SSTR2 3,410.00 3,600.00 3.3 3,420.00 3,600.00 1,794.60 1,800.00 0.0
E-Waved-40-45-SSTR3 3,110.00 3,300.00 1.4 3,120.00 3,300.00 1,796.40 1,800.00 0.0
E-Waved-40-45-SSTR4 2,760.00 2,940.00 102.7 2,760.00 2,940.00 1,695.40 1,800.00 0.0
E-Waved-40-45-SSTR5 2,600.00 2,640.00 481.8 2,640.00 2,640.00 2.2 486 0.0
E-Waved-40-45-SSTR6 2,580.00 2,640.00 98.2 2,580.00 2,640.00 1,699.60 1,800.00 0.0
E-Waved-40-75-SSTR1 4,680.00 5,280.00 2.8 4,680.00 5,280.00 1,795.60 1,800.00 0.0
E-Waved-40-75-SSTR2 3,921.40 4,260.00 6.5 3,960.00 4,260.00 1,791.80 1,800.00 0.0
E-Waved-40-75-SSTR3 3,441.40 3,720.00 2.1 3,480.00 3,720.00 1,796.10 1,800.00 0.0
E-Waved-40-75-SSTR4 3,480.00 3,840.00 22.4 3,480.00 3,840.00 1,775.80 1,800.00 0.0
E-Waved-40-75-SSTR5 3,180.00 3,300.00 387.1 3,180.00 3,300.00 1,411.00 1,800.00 0.0
E-Waved-40-75-SSTR6 2,943.50 3,060.00 45.6 3,000.00 3,060.00 1,752.20 1,800.00 0.0
E-Waved-40-105-SSTR1 6,840.00 6,840.00 0.8 6,840.00 6,840.00 1.3 3.3 -5.8
E-Waved-40-105-SSTR2 5,991.10 6,000.00 73.1 6,000.00 6,000.00 1.4 75.9 -2.9
E-Waved-40-105-SSTR3 5,567.10 5,580.00 35.9 5,580.00 5,580.00 1.4 38.6 -3.1
E-Waved-40-105-SSTR4 6,300.00 6,300.00 0.5 6,300.00 6,300.00 1.4 3.2 -6.3
E-Waved-40-105-SSTR5 5,753.30 5,820.00 11.3 5,760.00 2,760.00 17.3 33.2 0.0
E-Waved-40-105-SSTR6 5,480.00 5,520.00 3 5,520.00 5,520.00 1.6 6.2 0.0


