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Abstract

The last decades have seen a tremendous amount of research being devoted to effectively managing vehicle

fleets and minimizing empty mileage. However, in contrast to, e.g., the air transport sector, the question

of how to best assign crews to vehicles, has received very little attention in the road transport sector. The

vast majority of road freight transport in Europe is conducted by single drivers and team driving is often

only conducted if there are special circumstances, e.g., security concerns. While it is clear that transport

companies want to avoid the costs related to additional drivers, vehicles manned by a single driver sit unused

whenever the driver takes a mandatory break or rest. Team drivers, on the other hand, can travel a much

greater distance in the same amount of time, because mandatory breaks and rests are required less frequently.

This paper investigates under which conditions trucking companies should use single or team driving to

maximize their profitability. We present a novel optimization approach for simultaneously optimizing routes

and crewing decisions and provide experimental evidence that, for a wide range of cost factors, operating

a fleet with a mix of team and single drivers can significantly reduce operational costs when compared to

typical profit margins in the sector.
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1. Introduction

Competition in the road freight sector has led to very low profit margins close to only 3% in Europe

(European Commission 2008), on average. With low profit margins, carriers are forced to make

the best possible use of their trucks and truck drivers. While trucks can be used almost continu-

ously, working hours of truck drivers in the European Union are constrained by Regulation (EC)

No 561/2006. This regulation demands that truck drivers must take a 45 minutes break after at

most 4 1
2

hours of driving and an 11 hour rest after at most 9 hours of driving. Both breaks and
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rests may be taken in two parts of shorter duration. The rest must be taken within 24 hours after

the end of the previous rest period. Additional national regulations, in particular the implementa-

tions of Directive 2002/15/EC, must be complied with in each EU member state. These national

regulations require that a truck driver must not work for more than six hours without a break of

at least 30 minutes and if the total amount of work between two rest periods exceeds 9 hours, the

break time must be at least 45 minutes. Furthermore, a driver who performs night work must not

work for more than 10 hours in any period of 24 hours (Goudswaard et al. 2006).

Figure 1 shows a reference schedule for a single driver that can be repeated on a daily basis.

This schedule comprises two 4 1
2

hour driving periods with an intermediate break of 45 minutes.

If the driver is not working at night, a total of 31
4

hours can be used for non-driving activities on

every day, as long as all necessary breaks are taken. When this pattern is repeated on a weekly

basis, a weekly rest period must be taken after five days, so that no more than 45 driving hours

are accumulated in a week. Thus, the bi-weekly driving time limit of at most 90 hours is complied

with.
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Figure 1 Reference schedule for a single driver.

Due to these hours of service constraints, a truck with a single driver spends less time on the

road than in the parking lot. One way to increase the productivity of vehicles is to assign a team

of two drivers to a truck.

If a vehicle is continuously manned by a team of two drivers, one driver can take a break while

the other is driving. The minimum duration of a rest period for team drivers is reduced to 9 hours

and both drivers must take the rest simultaneously. The rest period must be taken within 30 hours

after the end of the previous rest. Figure 2 shows a reference schedule for team drivers that can

be repeated until a weekly rest is taken by both drivers. In this schedule, each driver drives for
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Figure 2 Reference schedule for team drivers.
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4 1
2

hours without a break and after that, the drivers change seats. Assuming that the time required

for the drivers to switch is negligible, the vehicle can keep moving without any significant break

for a total of 18 hours. Both drivers then take a rest period of 9 hours before repeating this driving

pattern.

Thus, a truck with two drivers can cover a much larger distance in a single day than a truck with

a single driver. On the other hand, only one of the two drivers is actually driving while the other

is unproductive. Transport companies are thus confronted with the question of whether or not to

increase the productivity of the trucks at the expense of the reduced productivity of the drivers.

To date, the current state-of-the-art in fleet management is lacking sophisticated methods for

determining the best driver composition, and there is a strong demand for appropriate approaches

that can be included in respective decision support systems.

This paper seeks to develop a better understanding of the factors influencing the decision on

whether or not a team of two drivers shall be assigned to a truck. After an overview of related

studies in Section 2, Section 3 discusses the direct impact of hours of service regulations on crewing

decisions based on normative driving patterns. In situations where it is reasonable to assume that

truck driver schedules are mainly constrained by driving times and compulsory off-duty periods

required by hours of service regulations, this normative analysis can be used to determine the

best crew size depending on the total driving time. For many transport operations, operational

constraints limit the applicability of normative driving patterns. In such cases, approaches for

determining the best crew size must consider these operational constraints and hours of service

regulations simultaneously. After providing illustrative examples highlighting that truck driver

schedules can significantly differ from normative driving patterns and that different vehicle routes

can be conducted with a team of two drivers than with a single driver, Section 4 introduces a

new family of vehicle routing problems that can be used to simultaneously optimize vehicle routes,

crewing decisions, and schedules. An optimization approach, based on a hybrid genetic algorithm

combined with labeling techniques, is proposed. Section 5 presents an experimental analysis of

selected cases to determine when a trucking company should use single or team driving. Section 6

concludes with some managerial insights from our analysis.

The main contributions of this paper are thus: 1) an analysis of crewing decision based on nor-

mative driving patterns, 2) a problem statement for a new family of combined vehicle routing,

crew assignment, and scheduling problems, 3) a sophisticated hybrid genetic algorithm based on

an efficient approach for quickly evaluating whether a route can be conducted by a single driver

or a team of two drivers, 4) extensive computational experiments on real and artificial benchmark

instances allowing to analyze the impact of different cost factors on best crew sizes, and 5) exper-

imental evidence that, for a wide range of cost factors, operating a fleet with a mix of team and
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single drivers can significantly reduce operational costs compared to relying on a homogeneous

crew assignment. Furthermore, we present the first approach for minimising costs for fleets where

each vehicle is operated by a team of two drivers. This approach only requires a fraction of the

computational effort required for fleets where each vehicle is operated by a single driver.

2. Related work

Crewing problems in transport have been studied intensively in the airline sector (see, e.g.,

Kasirzadeh et al. 2017, Salazar-González 2014). In air transport, crews consisting of pilots and

flight attendants must be assigned to scheduled flights. As in road transport, there are constraints

on the crew working hours. Aviation regulations limit the flight time of pilots and impose regu-

lar rest periods. Similarly, the working hours of flight attendants are constrained by government

regulations and company policies. Typical crewing problems concern the best assignment of crew

members to flights in such a way that each scheduled is covered, the regulations are satisfied, and

each crew member is assigned to flights forming a round trip. The number of pilots and flight

attendants required for each flight is generally given and there is no benefit in assigning additional

crew members to a flight. Similar problems can be found for scheduled services for other transport

modes, see e.g., in Ernst et al. (2004) and Ciancio et al. (2018).

In contrast to air transport, truck drivers can interrupt a trip to take a break or rest period. Xu

et al. (2003) were among the first to explicitly consider such break and rest requirements. They

study a vehicle routing problem in which hours of service regulations in the United States must be

complied with.

For a given vehicle route, the problem of determining a schedule for a truck driver that complies

with hours of service regulations in the United States has been tackled by Archetti and Savelsbergh

(2009), Goel and Kok (2012b), Goel (2014), and Rancourt et al. (2013). For European Union

hours of service regulations, solution approaches have been presented by Goel (2010) and Drexl

and Prescott-Gagnon (2010). Kok et al. (2011) and Goel (2012) extend these approaches by the

objective of finding a feasible truck driver schedule that minimises the duration and, with thus, the

respective labour costs. While above approaches focus on a single driver, Goel and Kok (2012a)

present an approach for efficiently determining whether a vehicle route can be conducted by a team

of two drivers.

For the combined problem of of finding vehicle routes and respective truck driver schedules

complying with relevant regulations, a variety of heuristics have been presented by Zäpfel and

Bögl (2008), Goel (2009), Ceselli et al. (2009), Kok et al. (2010), Prescott-Gagnon et al. (2010),

and Goel and Vidal (2014). The first exact approaches for the combined vehicle routing and truck

driver scheduling problem have been presented by Goel and Irnich (2017). Goel (2018) adapt this
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approach to consider additional regulations for driver who perform night work as well as realistic

cost functions including driver wages. Tilk and Goel (2020) show how the problem can be efficiently

solved using bidirectional labelling approaches. All of these approaches assume that a single driver

is assigned to each vehicle throughout the planning horizon. Drexl et al. (2013) propose a heuristic

algorithm for a variant of the problem where the driver to vehicle assignment can be changed

dynamically.

The scientific literature considering the possibility of assigning teams of two drivers to a vehicle

is scarce. Goel (2007), Bartodziej et al. (2009), and Derigs et al. (2011) consider rich vehicle routing

problems in which some vehicles are operated by a single driver and some vehicles are operated by

a team of two drivers. In these studies, the number of drivers assigned to a vehicle is not part of the

decision problem and assumed to be given. To our knowledge, the only work studying the question

of whether to assign one or two drivers to a vehicle is that by Kopfer and Buscher (2015). The

authors compare the productivities of single drivers and team drivers, assuming that the workload

of the drivers is organized in such a way that the main duty is driving over a longer time period.

The study is based on the assumption that driving is only interrupted by breaks and rest periods

required by European Union hours of service regulations. Loading and unloading times and other

waiting times during which the vehicle is not moving, as well as certain important European rules

on night work (see Goel 2018) are not considered.

Table 1 gives an overview over the main features of the related literature for road transport in the

European Union. Check marks indicate that an aspect is explicitly considered, whereas check marks

in parentheses indicate that this aspect is either implicitly or only partially considered. Previous

research that considered team driving assumed that the decision of whether a single driver or a

team of two drivers is assigned to a vehicle is made before routes are planned for these vehicles.

So far, the decision of whether a a single driver or a team of two drivers shall be assigned to a

vehicle has only be considered by Kopfer and Buscher (2015). However, their analysis does not

consider important regulations on drivers who perform night work and they do not consider the

problem of simultaneous routing and crewing. The rest of the literature either assumes that only

single drivers are used, or that a fix share of the vehicles is assigned a team of two drivers. The

only work considering crewing aspects in combination with hours of service regulations is the work

of Drexl et al. (2013) who only consider the case of single drivers.

3. Crewing decisions based on normative driving patterns

This section shows how the best crew size can be determined under the assumption that truck

drivers work according to normative driving patterns. This analysis differs from the analysis by

Kopfer and Buscher (2015) in two ways. First, Kopfer and Buscher (2015) assumed that a reference
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Regulations Drivers Costs Problem

Paper EC561 Night work Single Team Mileage Vehicles Labour Routing Crewing

Goel (2007) ! ! ! ! !

Zäpfel and Bögl (2008) (!) ! ! ! ! !

Ceselli et al. (2009) (!) ! ! (!) (!) !

Goel (2009) ! ! ! ! !

Bartodziej et al. (2009) (!) ! ! (!) (!) (!) (!)

Goel (2010) ! !

Drexl and Prescott-Gagnon (2010) ! ! !

Kok et al. (2010) ! ! ! ! !

Prescott-Gagnon et al. (2010) ! ! ! ! !

Derigs et al. (2011) ! ! ! ! ! ! !

Kok et al. (2011) ! ! !

Goel (2012) ! ! !

Drexl et al. (2013) ! ! ! ! ! ! !

Goel and Kok (2012a) ! !

Goel and Vidal (2014) ! ! ! ! ! !

Kopfer and Buscher (2015) ! ! ! ! ! !

Goel and Irnich (2017) ! ! ! ! !

Goel (2018) ! ! ! ! ! ! !

Tilk and Goel (2020) ! ! ! ! ! ! !

This study ! ! ! ! ! ! ! ! !

Table 1 Overview over related work on European hours of service regulations

schedule consisting of two 4 1
2

hour driving periods with a 3
4

hour break in between and followed by

an 11 hour rest period can be repeatedly used. If such a reference schedule of 20 3
4

hours duration

was repeated multiple times, the driver would inevitably conduct night work at some day in the

week. In such a case, however, the working time within any period of 24 hours must not exceed

10 hours. Thus, the assumption of Kopfer and Buscher (2015) can not be made. Therefore, we

use the reference schedules shown in Figures 1 and 2. Second, Kopfer and Buscher (2015) used

representative cost values for driver wages and truck rental, whereas our analysis finds simple

conditions that can be used by transport managers to determine whether to use a single driver or

a team of two drivers depending on the specific cost structure of their company.

The travel time required for the same travel distance can differ significantly if drivers operate

according to the reference schedules shown Figures 1 and 2. The resulting time required for single

and team drivers for a driving time of up to 90 hours, i.e., the bi-weekly driving limit for a single

driver is shown in Figure 3. The gray line illustrates the duration required by a single driver. After

five daily driving periods, a single driver reaches the maximum average amount of 45 hours driving

per week.

The black line illustrates the duration required by a team of two drivers. We again assume that

the drivers repeat the same pattern in the subsequent week. Therefore, a weekly rest period of

45 hours must be scheduled before the start of the next week and at most 168− 45 = 123 hours
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are available for driving and daily rest periods. Within this time frame, team drivers can have four

cycles of 18 hours of driving followed by a rest of 9 hours and another driving period of 15 hours.

Thus, team drivers can drive up to 87 hours per week.

driving time

duration

9h 45h 54h 90h

1 day

5 days

7 days

12 days

single driver

team drivers

w
ee

k
ly

re
st

Figure 3 Durations required for single and team drivers.

In this comparison, it must be noted that a single driver has 3 1
4

hours daily that can be used for

loading or unloading or other non-driving activities, whereas such activities reduce the amount of

driving time that team drivers can conduct within the week.

Depending on the cost structure of the carrier, the question of whether to use a single driver or

team drivers may be answered differently. Assuming a daily cost of ctruck for the vehicle and cdriver

for each driver, the time-related cost of operating a vehicle for dsingle days with a single driver is

(ctruck + cdriver) · dsingle,

and the cost of operating a vehicle for dteam days with a team of two drivers is

(ctruck + 2cdriver) · dteam.

Obviously, a single driver is less costly if team driving does not reduce the number of days required

to perform a trip, i.e., if dsingle = dteam. If team driving, however, requires only half of the number

of days required by a single driver or less, i.e., if dsingle ≥ 2dteam, then team driving is less costly.
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For dteam < dsingle < 2dteam, the costs for a single driver are the same as the costs for a team of

two drivers if
cdriver

ctruck
=

dsingle− dteam

2dteam− dsingle
. (C)

For larger values of cdriver/ctruck, the costs for a single driver are smaller, and for smaller values,

the costs for team drivers are smaller. Table 2 shows the number of days required for single and

team drivers depending on the driving time (in hours) and the resulting best crew size.

Driving time dsingle dteam Best crew size
(0,9] 1 1 1
(9,18] 2 1 2
(18,27] 3 2 1 or 2
(27,36] 4 2 2
(36,45] 5 3 1 or 2
(45,54] 6 3 2
(54,63] 7 3 2
(63,72] 8 4 2
(72,81] 9 4 2
(81,87] 10 5 2
(87,90] 10 6 1 or 2

Table 2 Comparison of single and team drivers for trips with different driving times.

For longer routes, team driving is the cheaper alternative for most ranges. For driving times

between 18 and 27 hours, a single driver is cheaper if cdriver > ctruck, i.e., if the daily cost for the

driver is larger than the daily cost of the vehicle. For driving times between 36 and 45 hours and

between 87 and 90 hours, a single driver is cheaper if cdriver > 2ctruck, i.e. if the daily cost for the

driver is larger than two times the daily cost for the vehicle.

4. Crewing decisions based on operational models

In the above section, we assumed that the only duty of truck drivers is to drive, and that there

are no other activities (e.g., such as loading or unloading) or operational constraints. Under these

assumptions, drivers can follow the reference schedules shown in Figures 1 and 2, where the only

factors influencing the decision on team driving are the driving time and the ratio between daily

driver wages and vehicle costs. In most transport operations, however, these assumptions are too

simplistic because operational requirements concerning business hours of customers, vehicle capac-

ities, and service durations, among others, can have a significant impact on truck driver schedules.

Figures 4 and 5 give examples of schedules for single and team drivers visiting different customers

subject to various operational constraints. These examples were obtained from the experiments

described later in this paper. In these experiments, customers must be visited within given time

windows, stationary work for loading or unloading the vehicle is required at each customer, and
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the selection of customers that can be visited in the same route is constrained by capacity limita-

tions. These schedules differ significantly from the reference schedules of Figures 1 and 2 and the

assignment of one or two drivers is not a free choice. In particular, if the route corresponding to

the schedule shown in Figure 5 was to be executed by a single driver, the mandatory breaks and

rest periods would cause substantial delays, leading to violations of time-window constraints.
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Figure 4 Example schedule for a single driver.
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Figure 5 Example schedule for team drivers.

To better understand the impact of operational constraints on crewing decisions, consider an

example where a transport company has to deliver two half truckloads to two customers who are

4 1
2

hours of driving away from the depot and where the driving distance between the customers

is two hours. To fulfil both customer requests and allow the drivers to return to the depot on the

same day, two trucks are required if each truck is operated by one driver, whereas a single truck

suffices for team driving. Figure 6 illustrates this example. In both cases, two daily salaries must be

paid. Because team driving only requires one vehicle for a total of 11 hours, instead of two vehicles

for a total of 18 hours, team driving can reduce both cost and distance.

As the above examples show, operational constraints can influence routing decisions, truck driver

schedules, and with them, the choice of using single or team drivers. A classification of operational

requirements in terms of type of carrier and goods, geographic distribution of customers, distances,

service times, time-window tightness, transport volumes and capacities, etc. does not help much in

determining the best crew compositions for the different classes, because the effects of these factors

on crew size are highly interrelated and of combinatorial nature. For example, geographic proximity

of customers and tight time-windows may be a reason to use single drivers if the time-window

tightness results in large waiting times when visiting the customers within the same route. On the
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Figure 6 Team driving can reduce both cost and distance.

other hand, geographic proximity of customers and tight time-windows may also be a reason to

use team drivers, because a single driver might not be able to visit the customers within the same

route due to the additional time required for mandatory breaks and rests. Similar effects can be

found for other classification schemes.

4.1. Problem formulation

In order to adequately consider these interrelated effects, we propose to tackle the team driving

question by solving combinatorial optimization problems considering typical operational require-

ments. For this purpose, we present a new family of vehicle routing problems for assigning drivers

to vehicles and optimizing routes and schedules. These problems can be generally represented by

the following optimization model:

minimize
∑
r∈R1

(ctruckdr + cdriverdr + cdistancekr)xr

+
∑
r∈R2

(ctruckdr + 2cdriverdr + cdistancekr)xr (1)

subject to
∑

r∈R1∪R2

airxr = 1 ∀i∈ V (2)

xr ∈ {0,1} ∀r ∈R1 ∪R2, (3)

where V represents a set of customers that must be visited by exactly one route, R1 represents

the set of all feasible routes that can be operated by a single driver, R2 represents the set of all

feasible routes that can be operated by a team of two drivers, and air is a binary parameter set to

1 if and only if customer i∈ V is visited by route r ∈R1 ∪R2.

Observe that the complexity inherent to the routing decisions is fully captured within the defi-

nition of the sets R1 and R2 representing all the possible feasible routes and their costs. However,
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these sets cannot be enumerated in practice, as they contain a number of routes which grows expo-

nentially with the problem size (as represented by the number of deliveries). As a consequence,

sophisticated search approaches that jointly find good candidate routes and optimize crewing deci-

sions must be designed. In the following, we will build upon a decade of methodological studies to

propose a practical solution approach.

In this model, we assume that R1 ∩R2 = ∅ for modeling simplicity, i.e., we distinguish single-

driver and team-driving routes (even with the same sequence of customers) since they have different

costs. This can easily be achieved, for example, by using dedicated starting nodes for single and

team drivers. For each route r ∈ R1 ∪R2, the parameters dr and kr denote the number of days

required and the total distance (in kilometers) traveled, and ctruck, cdriver, and cdistance denote the

daily cost for a truck, the daily cost for a driver, and the cost per kilometer. Each binary decision

variable xr is set to 1 if and only if route r ∈ R1 ∪R2 is selected in the solution. Objective (1)

seeks to minimize the total cost of all the routes, and Constraint (2) ensures that each customer is

visited by exactly one route.

This formulation permits to model the impact of cost factors on the decisions of visiting customers

using single or team driver routes. We assume, in the scope of the present study, that the salary

of a team of drivers for each day of operations is twice that of a single driver. If needed, the model

could be adapted to accommodate other cost definitions. Moreover, the operational requirements

imposed on individual routes (e.g., capacity constraints, pickups and deliveries, loading constraints,

maximum route lengths) are fully captured within the definition of the sets R1 and R2. Thus, the

formulation models a large variety of vehicle routing problems. We will focus our presentation on

the operational constraints of the well-known vehicle routing problem with time-windows (VRPTW)

(see, e.g., Bräysy and Gendreau 2005a,b), which aims at finding a minimal cost set of routes for

a fleet of vehicles such that a given set of customers is visited within given time-windows and

vehicle capacities are not exceeded. The sets R1 and R2 therefore include all routes satisfying the

constraints of the VRPTW and hours of service regulations for single or team drivers. Whether

a route complies with hours of service regulations can be validated by solving a so-called truck

driver scheduling problem, i.e., the problem of determining a schedule for a given route such that all

customers in the route are visited within given time windows and that applicable hours of service

regulations are complied with. It must be noted, that despite of limiting our presentation to this

particular problem variant, other operational constraints on the feasibility of routes can be tackled

by adequately adapting the approach described in the next sections.

4.2. Solution framework

As the sets of feasible routes for single drivers and team drivers (R1 and R2) are usually too large to

enumerate, the combined vehicle routing, crew assignment and scheduling problem cannot be easily
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solved. Goel (2018) presented an exact branch-and-price approach for the case where only single

drivers are considered. Although it is possible to adopt this approach to simultaneously consider

single and team drivers, finding exact solutions would require unpredictably long computational

runs for problems of practical relevance. Furthermore, the large computational effort would make

it impractical to run extensive computational experiments to measure the impact of different cost

factors on the best crew size.
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Figure 7 General principles of HGS.

Therefore, we show how local search-based metaheuristics developed for the single driver case

can be adapted to the case of simultaneous routing and crew optimization. For the purpose of

this paper we opted to adapt the hybrid genetic search (HGS) of Goel and Vidal (2014) to obtain

solutions of consistently high quality in a controlled time. HGS is based on the iterative generation

of new solutions via a problem-tailored crossover and efficient local-improvement techniques, in

combination with population-diversity management strategies that promote the exploration of a

wide variety of solutions. Figure 7 provides an overview of the main steps of the algorithm. It

uses the same general-purpose operators as the unified hybrid genetic search (UHGS – Vidal et al.

2014), which has been established as the most successful method for over fifty VRP variants,

retrieving almost systematically the optimal solutions which are available for these problems. The

main adaptations of the HGS for our problem reside in the local search phase, in which it becomes

necessary to determine whether a modified route can be operated by a single driver or a team of two

drivers. Similarly, if other local-search based solution frameworks are used, the main adaptations

required would be to evaluate the cost of any route after a change, i.e., after a move in the
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local search. Thus, fast route-evaluation algorithms are needed that are capable of considering the

particular characteristics of the problem at hand, in our case, the VRPTW.

4.3. Route evaluation algorithms

For every route r = (n1, n2, . . . , nk) explored during the local search, the algorithm must determine

whether there is a feasible schedule for a single driver or a team of two drivers and the necessary

number of days in both cases. This is done with a labeling algorithm, which begins with a label

representing the state of the driver(s) at the start of the route. We assume that all drivers are

fully rested at the start of the route. Then, this label is iteratively updated using appropriate

resource extension functions (REFs) associated to arcs of an auxiliary network similar to the one

shown in Figure 8. The REFs f trip
ninj

and REFs fvisit
ni

are used to initialize the total amount of driving

required from node ni to node nj and to update the label corresponding to a state after visiting

location ni within the corresponding time-window. The REFs fdrive
∆ are used to update the label

corresponding to a state after driving for a duration of ∆. The REFs f
offduty|i
∆ are used to update

the label corresponding to a state after an off-duty period of type i for a duration of ∆.

n1 n2 n3 n4
f trip
n1n2

fdrive
∆

f
offduty|i
∆

fvisit
n2

f trip
n2n3

fdrive
∆

f
offduty|i
∆

fvisit
n3

f trip
n3n4

fdrive
∆

f
offduty|i
∆

fvisit
n4

Figure 8 Network and REFs used for checking feasibility of a route r = (n1, . . . , n4)

For single drivers, our algorithm uses the labelling approach by Goel (2018) to determine truck

driver schedules with minimal duration. This approach uses resource labels indicating the time, the

number of days en-route, the cumulative driving time since the last break, the cumulative driving

time since the last rest, the cumulative working time since the last break, the time elapsed since

the last rest period, the offduty time required to complete a break, the offduty time required to

complete a rest, and the latest possible completion time of the last rest in the case the duration of

the rest period is extended. The regulations for single driver require four different types of REFs

f
offduty|i
∆ , where i indicates the first part of a break, the last part of a break, the first part of a rest,

or the last part of a rest.
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For team drivers, we extend the labelling approach of Goel and Kok (2012a) which does not

consider the constraints on the cumulative working time for drivers conducting night work. Fur-

thermore, the approach of Goel and Kok (2012a) only focuses on feasibility and can not be used

to find schedules minimising the number of working days. In our labelling approach, we use labels

indicating the current time, the start time, the latest possible start time, the cumulative driving

time since the last rest, the cumulative working time since the last rest, the time elapsed since the

last rest period, and the latest possible completion time of the last rest in the case the duration

of the rest period is extended. Only one REF f
offduty|i
∆ is required where i indicates a rest taken

by both drivers simultaneously. The breaks required by each driver are assumed to be taken when

the other driver is driving and the time required for drivers to switch seats is considered to be

negligible. A detailed description of the truck driver scheduling approach for team drivers is given

in Appendix A.

As determining a truck driver schedule for team drivers can be done with only one REF of type

f
offduty|i
∆ , the number of alternatives to be considered is much smaller than for the single driver

case in which four different REFs of type f
offduty|i
∆ are required. This makes our route evaluation

approach for team drivers significantly faster than the approach for single drivers.

4.4. Speed-up strategies

During a typical run of a metaheuristic solution approach, millions of local search moves must be

evaluated and each move evaluation implies new route evaluations for single and team drivers. To

reduce the computational overhead of route evaluations, we first check whether a feasible team

driver schedule exists, because otherwise, there cannot be a feasible single driver schedule for the

route. Furthermore, determining whether a route can be conducted by a single driver takes about

20 times longer than determining whether it can be conducted by a team of two drivers. Only if a

feasible team driver schedule is found, a route evaluation for a single drivers is required.

A variety of techniques is used to speed-up the remaining route evaluations. To avoid evaluating

unnecessarily many moves, we use memories with constant-time hash calculations to store route

evaluations, as well as static neighborhood restrictions (Goel and Vidal 2014). Furthermore, we

exploit lower bounds on move evaluations, as in Vidal (2017), to quickly filter any move that has no

chance of contributing to a better solution. We observe that the duration for a team of two drivers

is a lower bound on the duration for a single driver. Therefore, we calculate upper bounds on the

savings of a local search move, by computing the optimized duration as if a team was driving, but

with the cost coefficient for a single driver. A local search move with a negative upper bound on

the savings cannot improve the incumbent solution.

In order to assess the effect of these speed-up techniques we conducted computational experi-

ments on a set of benchmark instances from the literature. Detailed results of these experiments
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can be found in Appendix B. Our experiments show that the use of memory structures leads to

a speed-up by a factor of 4.03 and the use of the lower bounds on move evaluations accelerating

the search by a factor of 2.94 on average. With our lower bounds we were able to filter 90% of the

moves on average, considerably reducing the number of calls to the time-consuming single-driver

schedule optimization routine. Combining both speed-up techniques leads to an overall speed-up

by a factor of 18.24 and allows to quickly find high-quality solutions for the combined problem

of assigning drivers to vehicles and optimizing routes and schedules subject to respective hours of

service regulations.

5. Experimental analysis

To understand under which conditions a trucking company should use single and team driving, we

conducted experiments based on instances derived from the planning problem of one of ORTEC’s

retail customers in Eastern Europe. This retailer is using ORTEC’s route optimization engines to

construct routes by doing batch optimization runs for three days ahead. So far, the customer is

executing all routes with single drivers. Most of the routes are single-day trips, and others are

longer multi-day trips.

The instances are grouped in three datasets, each corresponding to a separate DC. Figure 9

illustrates the geographical spread of the addresses in each dataset. For each dataset, we created

five instances based on the locations shown in the figure, each time randomly removing 20% of the

original addresses to create variability in the customer locations. The planning horizon includes

three days (Monday till Wednesday), and time-window lengths range from 3 to 16 hours, with

an average of 9 hours. The original planning problem involves a heterogeneous fleet with small

differences in vehicle capacity. To simplify the experimental setting and to focus on the crew size

aspects, we assume a homogeneous vehicle fleet with a vehicle capacity set to the largest vehicle type

in the original problem. The numbers of customers in each dataset are 60, 70, and 88, respectively.

The vehicle capacity is 18 pallets and the average number of pallets demanded by the customers

is 7.7 pallets, leading to an average of 2 to 3 stops per trip. The variation in customer demand

leads to a mix of short and long routes with one to seven stops per route. The distribution of the

customer locations is shown in Figure 9. Each region shows an area of roughly 1000 times 1000

kilometres with a depot located close to the centre. Due to confidentiality reasons the exact region

and scale as well as the location of the central depot can not be revealed. Driving distances and

durations are based on shortest path distances in the road network and obtained from a geographic

information system.

We used the proposed HGS to solve these instances and determine the least cost routes for the

cases where 1) all vehicles are allocated a single driver, 2) all vehicles are allocated a team of two
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Case 1

Start time: 2016-04-21  09:00:00

Statistics:

Number of orders: 74

Order quantities:

total: 513.00     avg: 6.93     std dev: 4.38     max: 17.00     min: 1.00

Time window lengths:

avg: 24032.42     std dev: 13048.66     max: 86399.00     min: 10800.00

Nodes:

Set 1

Case 2

Start time: 2016-04-10  04:00:00

Statistics:

Number of orders: 87

Order quantities:

total: 451.00     avg: 5.18     std dev: 3.49     max: 16.00     min: 1.00

Time window lengths:

avg: 38089.66     std dev: 8150.41     max: 68400.00     min: 14400.00

Nodes:

Set 2

Case 3

Start time: 2016-04-17  09:00:00

Statistics:

Number of orders: 109

Order quantities:

total: 572.00     avg: 5.25     std dev: 4.04     max: 16.00     min: 1.00

Time window lengths:

avg: 37750.46     std dev: 8255.69     max: 50400.00     min: 10800.00

Nodes:

Set 3

Figure 9 Customer distribution of real-life instances.

drivers, and 3) the decision on whether to assign one or two drivers to a vehicle is part of the

optimization. To avoid random bias, we ran the heuristic algorithm five times on each instance

with different seeds.

Based on cost estimates provided by ORTEC, we use the following baseline cost values: labor

costs of e100 per driver per day (see Comité National Routier 2016), truck costs of e100 per day

(i.e., leasing or amortized acquisition costs, but excluding fuel costs), and distance-related costs of

e0.25 per kilometer (i.e., fuel, wear and tear, and possible tolls). We also assume, for now, that

the time required for loading and unloading the vehicle is independent of the number of drivers

assigned to the truck.

Only Single Only Team Optimized

Set 1 Avg. crew size 1 2 1.035

Avg. cost 100.8% 138.2% 100%

Avg. days 1.032 1 1.003

Avg. CPU 100% 40.7% 102.7%

Set 2 Avg. crew size 1 2 1.127

Avg. cost 103.2% 124.9% 100%

Avg. days 1.111 1 1.007

Avg. CPU 100% 39.42% 106.5%

Set 3 Avg. crew size 1 2 1.125

Avg. cost 103.5% 123.9% 100%

Avg. days 1.114 1 1.001

Avg. CPU 100% 57.55% 104.1%

Table 3 Impact of crew-size decisions on real-world instances.

Table 3 shows average results of our experiments for single drivers, team drivers, and an optimized

driver assignment. For each set of instances, the table shows the average crew size, the average

costs as a percentage of the cost of an optimized crew assignment, the average number of days
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required per tour, and the average computation time (CPU) as a percentage of the effort required

for the single driver case. The average crew size is calculated as (1 · k1 + 2 · k2)/(k1 + k2) where k1

and k2 are the number of single driver and team driver routes. An average crew size of 1 indicates

that all routes are conducted by single drivers, an average crew size of 2 indicates that all routes

are conducted by team drivers, and an average crew size of 1.5 would indicate that half of the

routes are operated by single driver and the other half by team drivers.

Relying exclusively on team drivers is clearly not cost-efficient for these instances. Nevertheless,

relying exclusively on single drivers is also not advisable and operational costs can be reduced by

between 0.8% and 3.5% on average by assigning team drivers to 3% to 13% of the routes. Consider-

ing the low profit margins of around 3% in European road freight transport (European Commission

2008), these savings are remarkable. Thanks to our acceleration techniques, the computational

effort required for simultaneous routing and crew optimization is only marginally higher than for

routing with a fixed assignment of one driver to each vehicle.

Only Single Only Team Optimized

Number of routes 505.8 496 501.2

Number of single driver routes 505.8 - 449.8

Number of team driver routes - 496 51.4

Number of days a truck is required 552.6 496 502.8

Number of daily salaries 552.6 992 554.2

Table 4 Solution characteristics for real-world instances.

Table 4 shows the total number of routes, the total number of days a truck is required and

the total number of daily salaries to be paid. These results are averaged over the five runs of

our algorithm. As observed in these experiments, optimizing the crew size eliminates most of the

multi-day tours such that the vast majority of the routes in the solutions require only one day. As

each route is evaluated for single and team drivers, we know that for any team driver route in the

solution, it is impossible for a single driver to execute the same route within a day without violating

time windows. Otherwise, a solution with fewer drivers and lower costs would have been found.

Overall, the number of days on which a truck is required is significantly reduced by optimizing crew

decisions and using teams for a few selected routes. The use of teams increases the total amount

of salaries paid to drivers, but this increase is relatively small in comparison to the reduction of

truck costs. When operating exclusively with team drivers, all of the routes require only one day.

We repeated our experiments with different cost parameters and under the hypothesis that the

service time at the customer locations can be reduced (by 50% or 25%) if two drivers are available

for loading and unloading the vehicle. However, the best crew sizes did not vary much from those
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reported in Table 3. These experimental results are well aligned with our analysis of normative

driving patterns for single and team drivers presented in Section 3. The insensitivity to the cost

parameters is not surprising given the short lengths of the routes.

In general, it can be assumed that transport companies seek to obtain a pool of transportation

requests that fit particularly well to the company’s way of conducting business. Instead of fulfilling

a transportation request that does not suit current practice, a transport company may either decide

to reject the request or to renegotiate some of the requirements. In other words, if a transport

company is operating all vehicles with a single driver, it will seek to obtain transportation requests

that can be combined into cost-efficient single-driver routes, and the company will try to renegoti-

ate, e.g., time constraints on deliveries to certain locations to achieve better delivery consolidation.

When generating instances based on data of companies operating all vehicles with single drivers, as

we did for our above experiments, it is likely that these effects create an inherent bias toward single

driver routes in optimized crew compositions. To eliminate this bias and consider a more diverse

set of scenarios, we conduct additional experiments on artificial benchmark instances commonly

used to evaluate the performance of optimization approaches for vehicle routing problems with

time-windows. The 56 instances used in these experiments were introduced by Solomon (1987) and

adapted by Goel (2009) and Goel (2018) for combined vehicle routing and truck driver scheduling

problems in the European Union. The instances can be grouped into three classes, R, C, RC, con-

taining randomly-distributed, clustered and mixed customer locations, respectively. Each instance

contains 100 customers, and the average size of the time-windows per instance ranges from less

than 7 hours to over 107 hours. The planning horizon is 144 hours (6 days) and the maximum

driving time (without compulsory breaks and rests) between two customers is approximately one

day. Table 5 shows the results of our experiments using the same baseline cost values as for the

real-world instances.

Under these assumptions, operating each vehicle with two drivers is more cost-efficient than using

only single drivers, but the best results are again obtained with an optimized crew composition.

Compared to only using single drivers, optimized crew assignments can reduce operational costs by

between 5.6% and 7.2% on average. The cost benefit compared to exclusively relying on team drivers

is between 2.8% and 5.0% on average. The average tour durations are higher than in the real-world

instances, indicating that the driving time in some routes falls into the range where, according to

Table 2, the best crew size depends on the cost structure. For these sets of instances, the additional

computational effort for simultaneous routing and crew optimization is larger than for the real-

world instances. However, considering that each route has to be evaluated for a single driver and

for team drivers, the computational overhead for simultaneous routing and crew optimization is

clearly justified considering the significant cost savings.
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Only Single Only Team Optimized

R Avg. crew size 1 2 1.731

Avg. cost 107.0% 102.8% 100%

Avg. days 2.365 1.477 1.507

Avg. CPU 100% 58.1% 142.0%

C Avg. crew size 1 2 1.475

Avg. cost 107.2% 105.0% 100%

Avg. days 2.892 2.762 2.406

Avg. CPU 100% 90.4% 121.7%

RC Avg. crew size 1 2 1.670

Avg. cost 105.6% 103.0% 100%

Avg. days 2.480 1.578 1.667

Avg. CPU 100% 59.7% 161.3%

Table 5 Impact of crew-size decisions on artificial instances.

Only Single Only Team Optimized

Number of routes 614.4 593.6 635

Number of single driver routes 614.4 - 231.6

Number of team driver routes - 593.6 403.4

Number of days a truck is required 1552.2 980.6 1108.8

Number of daily salaries 1552.2 1961.2 1673.6

Table 6 Solution characteristics for artificial instances.

Table 6 shows the total number of routes, the total number of days a truck is required and the

total number of daily salaries to be paid over all instances. Interestingly, the overall number of

routes is higher when optimizing the crew size. As team drivers help reducing the duration required

for these routes, the number of days a truck is required is significantly reduced without excessively

increasing the daily salaries to be paid.

We conducted extensive additional experiments with different cost parameters to avoid any

possible bias. In particular, we varied the ratio of the daily driver to the truck cost and the ratio of

the cost per kilometer to the daily truck cost. A factorial design with all 25 possible combinations

of parameters ( cdriver

ctruck
, cdistance

ctruck
)∈ {0.25,0.5,1,2,4}×{ 1

100
, 1

200
, 1

400
, 1

800
, 1

1600
} was used. Thus, the daily

driver costs range between a quarter and 4 times the daily costs for the vehicle, and the daily

truck costs range between the costs for 100 to 1600 kilometers of traveled distance. Furthermore,

we made various assumptions about the service durations at customer locations. More precisely,

we consider three different settings, in which the service duration of team drivers (denoted steam)

is 50%, 75%, or 100% of the service duration of a single driver (denoted ssingle). For each of the 25

cost-parameter configurations and the 3 assumptions on service durations for team drivers, we ran

the algorithm five times on each of the 56 instances with different random seeds and report average
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solution values over these runs. Furthermore, we repeated the experiments under the assumptions

that all vehicles are operated by a single driver and all vehicles are operated by two drivers.

The box-and-whisker plots in Figures 10 to 12 show the average number of drivers per vehi-

cle in the solutions obtained for different cost parameters and assumptions on service durations.

Figures 10a to 12a show how a change in labor costs impacts the best crew size for fix values of

cdistance = 0.25 and ctruck = 100 (i.e., cdistance

ctruck
= 1

400
), and Figures 10b to 12b show how a change in

mileage costs impacts the best crew size for fix value of cdriver = ctruck = 100 (i.e., cdriver

ctruck
= 1).

The figures clearly show that the share of team drivers grows with a decrease of driver wages.

Not surprisingly, with steam = 0.5 · ssingle the possibility of reducing the service time required at the

customers makes team driving particularly beneficial. The highest sensitivity to a change in driver

wages can be observed for steam = ssingle. Even with extremely high driver wages, a significant share

of team drivers is used. This is particularly interesting, because it indicates that team driving is

also beneficial in high-income countries.

The effect of mileage costs is less pronounced but still notable, and we can see that higher mileage

costs result in a reduced share of team drivers. As expected, we observe that the traveled distance

decreases with higher mileage costs. Although the number of routes also decreases, the number of

daily driver shifts is increased. This indicates that schedules include more waiting times resulting

from time-window constraints at customer locations. It appears that the labor costs related to

these waiting times outweigh the potential benefits of reducing mileage by using team drivers, and

therefore, their share decreases.

The same effects can also be observed for different values of the constant parameters used in

Figures 10 to 12. Appendix C provides average results for the full factorial design. It must be noted

that for all values of the cost parameters and the different assumptions on service durations, an

average of at least 12.7% of all vehicles are operated by two drivers and an average of at least 7.0%

of all vehicles are operated by one driver. This shows that independently of the cost parameters

and assumptions on service durations, the best policy overall is to have a mixed composition of

single and team drivers.

Figures 13 to 15 show the relative cost increase of single and team driving compared to an

optimized crew assignment assuming fixed values of cdistance = 0.25 and ctruck = 100. Using only

single drivers can be substantially more expensive than using a mix of single and team drivers,

particularly for low and medium driver wages. If team drivers can parallelize service tasks at

customer locations costs savings are substantial, even with high driver wages. Conversely, using

only team drivers can be considerably more expensive than using a mix of single and team drivers

for high driver wages. Overall, cost savings of 10% and more can be achieved for many instances

and some outliers indicate that a pure strategy of using only single or only team drivers can have
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Figure 10 Number of drivers for modified Solomon instances for steam = 0.5 · ssingle.
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Figure 11 Number of drivers for modified Solomon instances for steam = 0.75 · ssingle.
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Figure 12 Number of drivers for modified Solomon instances for steam = ssingle.
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Figure 13 Cost difference for modified Solomon instances for steam = 0.5 · ssingle.
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Figure 14 Cost difference for modified Solomon instances for steam = 0.75 · ssingle.
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Figure 15 Cost difference for modified Solomon instances for steam = ssingle.
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a disastrous effect on efficiency compared to a mixed strategy. Again the same effects can also be

seen for different values of the constant parameters used in Figures 13 to 15 and average results

for the full factorial design are provided in Appendix C.

Averaged over all Solomon instances and all scenarios, the computational effort required for

simultaneous routing and crew optimization is only 27% higher than the effort required for solving

the vehicle routing and truck driver scheduling problem with single drivers.

We finally investigated potential other factors having an effect on crew size, such as distances,

demands, time window tightness, and combinations thereof. However, we could not find clear cor-

relations involving these factors that would hold across all scenarios. Apparently, the combinatorial

nature of vehicle routing under hours of service regulations can cause large changes in solutions even

with small changes in the input data. On the other side, large changes, for example, with respect to

the tightness of time windows may not have any effect on the optimal solution if the time windows

still include the scheduled times in the optimal solution. Moreover, factors that can have a direct

impact on the best crew size for any particular route, e.g. the distance between customers, may have

a negligible effect on the best crew size if the routes are the outcome of the optimization process. In

order to allow the reader to further analyze our results and test additional hypotheses, we provide

all our experimental results at https://w1.cirrelt.ca/~vidalt/en/VRP-resources.html.

6. Managerial insights and conclusions

In this paper, we have evaluated under which conditions trucks should be manned by a single

driver or a team of two drivers. For cases where driver schedules can be based on normative driving

patterns, Table 2 can be used to determine the best crew size depending on the driving time and

the ratio of daily labor costs and daily vehicle costs. Our analysis of normative driving patterns

shows that team driving is particularly beneficial for long routes for which route durations can be

reduced when using a team of two drivers.

Whenever there are operational constraints that have an impact on routes and schedules, crewing

decisions cannot be solely based on normative driving patterns. To analyze crewing decisions in

such cases, we presented a new family of vehicle routing problems for the simultaneous optimization

of driver assignments, routes, and schedules. We presented a solution approach based on an hybrid

genetic search framework that has proven to be extremely flexible with regards to the different

operational characteristics. In our approach, we use problem specific route evaluations to determine

whether a route shall be conducted by a single driver or team drivers. We proposed an efficient

approach for quickly evaluating neighborhood moves using lower bounds that help to filter out

on average 90% of the time-consuming single-driver route evaluations, thus leading to an effective

solution procedure. Overall, our solution approach, involving the decision whether to assign one or
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two drivers to a vehicle, requires only moderate additional computational effort compared to the

case where all vehicles are assumed to be assigned a single driver only. For the real-life instances,

running times increased by only 1% on average and, for the artificial instances, running times

increased by 27% on average.

We tested our approach on instances derived from real cases and a collection of artificial instances

covering a range of alternative characteristics. Our experiments with a wide range of cost factors

and scenarios, show how many drivers should be assigned to the vehicles and how much can be

saved in comparison with a pure strategy of using only single or team drivers.

A fundamental finding of our experimental results is that cost reasons alone cannot justify to

operate all vehicles with single drivers. This observation already contradicts common practice in

many transport companies not using team drivers at all. Operating a fleet with a mix of team and

single drivers can results in significant cost savings in a market with very low profit margins. It

must be noted that this observation also holds for high-income countries where transport managers

might hesitate in assigning team drivers to a vehicle assuming that the respective costs cannot be

justified.

Not surprisingly the highest cost benefit is obtained if team drivers can parallelize service tasks

at customer locations. However, an interesting finding of our experiments is that even if team

drivers cannot parallelize service tasks and require the same amount of time for servicing customers

as a single driver, the cost advantage of operating some vehicles with a team of two drivers can

be significant. In many cases the average cost savings are a multitude higher than average profit

margins in European road freight transport.

Using team drivers for selected routes does not necessarily imply that more drivers are needed.

Our computational experiments reveal that in some cases the number of driver salaries that must

be paid is actually smaller, because of the shorter duration of the team driver routes. In other cases,

however, more drivers are needed. In the presence of driver shortages this may be a disadvantage,

however, the cost benefits of using a mix of single and team drivers can be reinvested into driver

salaries, making the truck driver job more attractive. Furthermore, some truck drivers prefer team

driving due to safety and security benefits and having a companion while being en-route.

The best share of team drivers can vary significantly for different use cases. Obviously, if all

routes can be operated by a single driver on a single day, it is not possible to reduce costs by using

team drivers without changing the routes. On the other hand, if team drivers are required, e.g. due

to security concerns or because loading and unloading involves heavy work, there is no choice of

using a single driver. For cases where team drivers are required for some customers, our approach

can be easily adapted by simply reducing the set R1 to the set of feasible routes that do not contain
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a customer requiring team drivers. In such cases, our approach would become even faster because

fewer single-driver routes would have to be evaluated.

Obviously, there is a myriad of different operational requirements in road freight transport and

it is impossible to conduct experiments that capture all of these requirements in all different

combinations. Our solution approach for simultaneous optimization of driver assignments, routes,

and schedules can be used for a large variety of these characteristics. Whenever normative driving

patterns cannot be used to decide on single vs. team driving, transport managers can use the

proposed methodology, or an adaptation thereof, to determine how many drivers are required and

which routes should be operated by single or team drivers.

Crewing decisions can interrelate with other tactical decisions. In such situations, our approach

can be used in a what-if analysis, where various tactical decisions interrelating with crewing deci-

sions are evaluated using simulation and optimization. It must be noted that the full potential of

team driving may be realized only if certain tactical decisions are changed, making it possible to

operate longer routes with a team of two drivers. Otherwise, the inherent bias resulting from prior

tactical decisions based on a single-driver practice can lead to optimized crew sizes involving only a

limited number of team drivers. This can be seen in our results on the instances derived from a real-

life business of one of ORTEC’s customers, which historically relied exclusively on single drivers.

These instances are influenced by several tactical decisions of the retailer, such as the selected

delivery locations, the assignment of delivery locations to distribution centers, and the choice of

visit days and times. Nevertheless, our experiments showed that even in such cases a notable cost

reduction can be obtained by assigning team drivers to some of the vehicles. By reconsidering some

of the tactical decisions, an even higher benefit of team driving could be possible.
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Zäpfel, G., M. Bögl. 2008. Multi-period vehicle routing and crew scheduling with outsourcing options.

International Journal of Production Economics 113 980–996.



A. Goel, T. Vidal, and A. L. Kok: Single versus team driving in Europe
29

Appendix A: Truck driver scheduling for team drivers

Let us assume we are a given route (n1, n2, . . . , nk), where ni indicates a location at which a

stationary task of duration si has to be conducted with a start time in the given time window

[tmin
i , tmax

i ]. The driving time from a node n to a node m in the route is denoted by dnm. We can

determine a schedule for a team of two drivers minimising the number of working days required by

a labelling method in which the state of the driver team is represented by labels

l = (ltime, ltrip, lbegin, lpostpone, ldrive, lwork, lelapsed, llatest)

where

ltime represents the current time,

ltrip represents the driving time required until the next customer,

lbegin represents the start time,

lpostpone represents the latest possible start time,

ldrive represents the cumulated driving time of both drivers since the last rest,

lwork represents the cumulated working time of both drivers since the last rest,

lelapsed represents the time elapsed since the end of the last rest,

llatest represents the latest possible time until which the last rest must be fully taken.

The labelling method starts with an initial label

l = (tmin
n1

+ sn1
,0, tmin

n1
, tmax

n1
,0, sn1

, sn1
, tmax

n1
)

representing the state of the drivers after conducting the stationary task at location n1 and extends

labels along the arcs of an auxiliary network similar to the one illustrated in Figure 8. First, the

label is extended with REF f trip
n1n2

associated to the link from location n1 to an intermediate vertex.

This REF is used to set the required driving time between n1 and n2. Then, the path can continue

along the loops where the REFs fdrive
∆ and f

offduty|rest
∆ are used to update the driver state depending

on the duration ∆ of the respective activity. Eventually, the path continues along an arc from

the intermediate vertex to location n2 and REF fvisit
n2

is used to update the label considering the

stationary work that is conducted at location n2. This approach is repeated until the stationary

work of the last location is completed.

Table 7 shows how label attributes are updated by the REFs. Empty entries in the table indicate

that the respective values of the label attributes remain unchanged. The REF f trip
nm initializes the

required driving time for the trip to dnm and leaves all other label attributes unchanged. The REF

fdrive
∆ reduces the remaining driving time by the duration of the driving activity ∆, increases the

time, the cumulative amounts of driving and work, and the time elapsed since the last rest by ∆.
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l̂ f trip
nm (l) fdrive

∆ (l) f
offduty|rest
∆ (l) fvisit

m (l)

l̂time ltime + ∆ ltime + ∆ max{ltime, tmin
m }+ sm

l̂trip dnm ltrip−∆

l̂begin min
{
lbegin + max{0, tmin− ltime}, lpostpone

}
,

l̂postpone min{lpostpone, tmax
m − (ltime− lbegin)}

l̂drive ldrive + ∆ 0

l̂work lwork + ∆ 0 lwork + sm
l̂elapsed lelapsed + ∆ 0 max{lelapsed, tmin

m − llatest}+ sm
l̂latest ∞ min{llatest, tmax

m + sm− l̂elapsed}

Table 7 REFs for team drivers

The REF f
offduty|rest
∆ increases the time attribute by the duration ∆, sets the cumulative amount

of driving and work to zero, and sets the time elapsed since the last rest to zero and the latest

possible completion time of the rest to infinity. The REF fvisit
m increases the time attribute to the

earliest time at which the stationary work at customer m can be completed and adds the duration

of the stationary work to lwork. If ltime < tmin
m , then the start time may be increased in order to

avoid waiting time before location m. Similarly, the latest possible start time may be reduced if the

end of the time window at location m requires so. Furthermore, the duration of the previous rest

period is increased by the smallest possible amount so that the time elapsed is not unnecessarily

increased and that the work can start within the time window of the customer. The time elapsed

since the last rest is updated accordingly and the latest completion time of the previous rest is

reduced if the closing time of the time window requires this.

In order to only consider labels complying with the regulations, the feasibility conditions given

in Table 8 must be satisfied when using any of the REFs.

REF Feasibility condition

fdrive
∆ (l) ∆≤min{ltrip,18− ldrive,20− lwork,21− lelapsed}
fvisit
m (l) ltrip = 0, ltime ≤ tmax

m , sm ≤ 20− lwork, max{lelapsed, tmin
m − llatest}+ sm ≤ 21

f
offduty|rest
∆ (l) ∆≥ 9

Table 8 Feasibility conditions

For REF fdrive
∆ the cumulative driving time must not exceed two times 9 hours, the cumulative

working time must not exceed two times 10 hours, and it must be possible to take 9 hours of rest

within 30 hours after the last rest. For REF fvisit
m the customer location must have been reached, the

time window must not be closed, the limit on the cumulative working time must not be exceeded,
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and it must be possible to take 9 hours of rest within 30 hours after completion of the last rest.

For REFs f
offduty|rest
∆ the duration ∆ must be at least 9 hours.

The large number of alternative labels that may be generated in the process of finding a truck

driver schedule for a route (n1, n2, . . . , nk) can cause a significant computational burden. In order

to avoid unnecessary calculations, dominance criteria can be used to discard a large share of labels.

Given two feasible labels l1 and l2 which both represent a driver state at the end of the partial

route (n1, n2, . . . , ni) with 1≤ i≤ k, we write l1 � l2 if

ltime
1 ≤ ltime

2 ,

ltrip1 ≤ ltrip2 ,⌊
lbegin
1

24

⌋
≥

⌊
lbegin
2

24

⌋
,

⌊
lpostpone
1

24

⌋
≥
⌊
lpostpone
2

24

⌋
,

ldrive
1 ≤ ldrive

2 ,

lwork
1 ≤ lwork

2 ,

lelapsed
1 ≤ lelapsed

2 ,

and

llatest
1 ≥ llatest

2 .

The division by 24 hours for attributes lbegin and lpostpone and subsequent truncation, together with

ltime
1 ≤ ltime

2 , ensures that the number of working days of any schedule obtained by extending l1 does

not execeed the number of working days of any schedule obtained by extending l2.

If l1 � l2 then l2 can be discarded because it can not contribute to finding a schedule for the

given route with lower costs.

With these dominance criteria we can show that an optimal truck driver schedule can be found

if the parameter ∆ for REF fdrive
∆ (l) is always set to

∆l := min{ltrip,18− ldrive,20− lwork,21− lelapsed}

and the the parameter ∆ for REF f
offduty|rest
∆ (l) is always set to 9 hours.

After having found a non-dominated label representing the state of the team drivers after travers-

ing the auxiliary network, we can determine the minimal number of days required as follows. If⌈
lbegin

24

⌉
≤ lpostpone, we can postpone the start time so that it begins at the next day. If furthermore⌈

ltime

24

⌉
− ltime <

⌈
lbegin

24

⌉
− lbegin we can postpone the start time to the beginning of the next day

without pushing the completion time into the next day.
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Appendix B: Evaluation of speed-up techniques

Table 9 provides the the running times of our algorithm without the speed-up techniques described

in Section 4.4 divided by the running times of our algorithm with the speed-up techniques. The

artificial instances described in Section 5 with cost factors cdriver = 100, ctruck = 100, and cdistance =

0.25 were used for these experiments.

Without memory structures
Instance Without memory structures Without lower bounds and lower bounds

R101 3.77 3.06 19.76
R102 4.08 3.36 23.15
R103 3.43 3.78 15.70
R104 3.20 3.76 17.16
R105 4.21 2.59 20.01
R106 3.77 3.29 17.89
R107 3.34 3.11 16.39
R108 3.96 3.24 21.66
R109 3.49 2.89 15.10
R110 3.20 3.02 14.38
R111 3.66 3.25 17.86
R112 3.85 2.54 15.83
R201 3.52 2.72 15.84
R202 3.11 3.19 14.40
R203 3.41 3.07 16.89
R204 3.45 2.91 13.99
R205 3.26 2.69 16.00
R206 2.86 3.26 11.58
R207 3.87 2.86 19.21
R208 2.99 3.03 12.51
R210 2.92 3.16 11.87
R209 3.35 2.77 14.33
R211 2.53 2.98 13.16
C101 5.07 2.48 27.02
C102 4.40 3.42 23.78
C103 3.51 4.05 18.60
C104 4.13 3.94 22.70
C105 4.87 2.92 25.13
C106 4.31 2.91 23.65
C107 3.90 3.22 21.83
C108 3.91 2.82 19.79
C109 3.96 3.28 21.92
C201 6.25 2.19 14.00
C202 5.04 2.33 11.35
C203 4.46 2.42 10.38
C204 3.43 2.77 9.66
C205 8.44 1.79 10.86
C206 5.84 2.04 11.69
C207 5.27 2.26 11.63
C208 6.38 1.89 9.97

RC101 5.52 2.76 28.87
RC102 4.45 3.24 26.72
RC103 4.18 3.18 26.66
RC104 3.93 3.97 26.76
RC105 4.78 2.78 28.98
RC106 3.69 3.17 17.95
RC107 4.18 2.77 24.53
RC108 4.26 3.17 26.79
RC201 3.67 2.60 17.15
RC202 3.90 2.76 21.97
RC203 3.22 2.85 18.08
RC204 3.67 3.07 15.78
RC205 3.49 2.73 18.85
RC206 3.82 2.39 18.07
RC207 3.09 3.03 15.85
RC208 3.40 2.75 19.57

Average 2.94 4.03 18.24

Table 9 Speed-up factors
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Appendix C: Results for the full factorial design

Figures 16 to 18 show the average number of drivers per vehicle in the solutions obtained for the

different cost parameters and assumptions on service durations. Figures 19 to 21 show the relative

cost increase of pure strategies using single drivers or team drivers only compared to a mix strategy

for the different cost parameters and assumptions on service durations. In the figures, an increase in

driver cost corresponds to a move from the left to the right, an increase in mileage cost corresponds

to a move to back to the front, and an increase in vehicle cost corresponds to a move from the

front right to the back left.
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Figure 16 Average number of drivers for modified Solomon instances for steam = 0.5 · ssingle.
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Figure 17 Average number of drivers for modified Solomon instances for steam = 0.75 · ssingle.
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Figure 18 Average number of drivers for modified Solomon instances for steam = ssingle.
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Figure 19 Average cost difference for modified Solomon instances for steam = 0.5 · ssingle.
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Figure 20 Average cost difference for modified Solomon instances for steam = 0.75 · ssingle.
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Figure 21 Average cost difference for modified Solomon instances for steam = ssingle.


