
Resource Requirements in Business Process
Modelling from an Operations Management

Perspective
Asvin Goel

Kühne Logistics University
Hamburg, Germany
asvin.goel@the-klu.org

Min-Bin Lin
Humboldt Universität
Berlin, Germany

linmibin@hu-berlin.de

Abstract—Operations management entails the design
and control of business operations with the goal of
providing goods and services as efficiently as possible.
Usually various resources are required to conduct op-
erations and the required resources are usually limited
in numbers and availability. Business process models
supporting operations management should aid in ef-
fectively using available resources, identifying process
inefficiencies, and enabling appropriate action if re-
sources are unavailable or cannot operate as required.
In this work we show how typical resource require-
ments found in operations management can be included
in business process models and propose BPMN 2.0
compatible modelling patterns for describing resource
requirements based on the concepts of requests and
releases. We discuss various modelling requirements
from an operations management perspective and dis-
cuss how request-release modelling patterns can be
used for different application cases.

Index Terms—business process modelling, resource
requirements, BPMN 2.0

I. Introduction and related work
Operations management is a multidisciplinary domain

responsible for managing business processes which create
goods and services [1]. It includes: planning, organising,
coordinating, and controlling the transformation of inputs
into desired outputs. Operations managers spend a large
share of their time on efficiently managing expensive
resources like skilled workforce or machines and it is of
utmost importance that the utilisation of such scarce
resources is well aligned with the requirements of business
processes. Furthermore, cost cutting initiatives, such as
lean management and just-in-time strategies [2, 3], have
led many companies to reduce inventory levels. Low inven-
tory levels, however, bear the risk of stockouts, if required
parts and components are not available when needed. As
stockouts can be a major cause of delays and can have a
strong impact on the performance of processes, operations
managers must carefully balance decisions concerning the
availability of staff, machines, parts, and components with
the efficiency of the processes.
Business process model and notation 2.0 (BPMN 2.0)

can explicitly illustrate the interactions among the opera-

tional activities, and has become a de facto standard for
process modelling in various fields [4]. Giving graphical
notation to business processes facilitates the capability
to communicate a wide range of information and to
cooperate with various types of users in a well-defined
manner. Operations managers can comprehensibly under-
stand workflow logics and conduct process improvement
by using BPMN 2.0. However, the resource perspective
of BPMN 2.0 is limited. With so-called swimlanes, a
process modeller can indicate which resource is respon-
sible for the execution of particular activities. However,
BPMN 2.0 does neither provide information on whether
the needed resource is actually available at the time when
the activity is to be conducted, nor does it give any
indication which particular resource shall be assigned to
the activity if multiple suitable resources are available.
Furthermore, swimlanes cannot be used to model the
simultaneous requirement of multiple resources and are
not suitable for passive resources like raw materials, parts,
and components.
In order to support limited availabilities of resources

required by processes, [5] tackles resource allocations using
answer set programming. A Resource Assignment Lan-
guage (RAL) allowing to model which human resource can
perform which activity is proposed in [6]. In the visual
modelling language for human resources proposed in [7],
requirements demanding that the same resource is used
for different tasks can be modelled. A language allowing
to support the simultaneous allocation of multiple human
resources is presented by [8].
With the Business Process Simulation Specification

(BPSim) [9] it is possible to specify simulation-relevant
data such as resource roles, quantities, and availabilities.
However, the additional data is not included within the
BPMN model. A critical discussion of BPSim is given
by [10]. To consider more complex resource requirements
that cannot be simulated with BPSim, [11] propose to
extend BPMN 2.0 introducing the concept of a shared
task. Here, shared tasks are used to indicate tasks that
share the same resource with a limited capacity. Tasks
belonging to different process instances can occupy some of

41

2022 IEEE 24th Conference on Business Informatics (CBI)

2378-1971/22/$31.00 ©2022 IEEE
DOI 10.1109/CBI54897.2022.10047

the capacity of the resource and the token flow of different
process instances is no longer independent. [12] propose an
execution semantics for so-called batch activities allowing
to dynamically generate batches across multiple process
instances.

In discrete-event system simulation, resource require-
ments are explicitly considered and useful modelling pat-
terns exist since the 1960s. In the simulation language
GPSS, the seize-delay-release modelling pattern is used
allowing to allocate resource to activities. Between the
seize and release no other task can be conducted by the
resource. A delay is specified to ensure that the time
between the seize and release of the resource is sufficiently
large [13]. To tackle the lack of similar considerations of
resource requirements in Business Process Modeling, [14]
introduces the concept of resource-constrained activities
and proposes to extend BPMN by adding visual markers to
sequence flows in order to indicate that the subsequent ac-
tivity requires a resource. Complex resource requirements
demanding that the same resource is allocated to multiple
activities are not considered.

A comprehensive survey on the literature related to
resource allocations in business processes has been con-
ducted by [15]. One of their findings is that the variability
of many approaches is limited and does not facilitate an
easy adaptation for different use cases.

Despite the various approaches to consider resource re-
quirements in business process modelling and BPMN 2.0,
so far most approaches have focussed on a particular
feature and use case and it is unclear how the various
approaches can be combined for heterogeneous use cases in
operations management. A query on the EBSCO research
database revealed only seven results when searching for
articles published in the years 2011 to 2021 which contain
the term BPMN in the text (TX All Text) and which
are published in journals containing the term operations
or operational in the title (SO Publication Name). This
indicates that BPMN 2.0 has not found much recognition
in the operations management and operations research
communities. The authors believe that the limited support
of resource requirements in BPMN can be seen as one of
the main reasons for this negligence.

This paper provides an overview over various require-
ments on modelling resource requirements from an op-
erations management perspective. Most importantly we
propose modelling patterns using dedicated BPMN 2.0
subprocesses for representing resource requirements and
we propose a visual representation to ease modelling with
this pattern. By satisfying the observed requirements,
the proposed modelling patterns help to bridge the gap
between operations management and BPMN 2.0 and facil-
itate the development of information systems for simulat-
ing, automating, and optimising the execution of business
processes.

II. Requirements

Based on the authors’ experience over two decades of
teaching and conducting research and projects in the field
of logistics and supply chain management, this section
provides several requirements on modelling resource re-
quirements commonly found in operations management.
R1 Availability. The availability of resources is usually

limited. Some resources are only available during
certain time intervals and in certain quantities. Fur-
thermore, resources may be consumed by processes
and resources may be temporarily reserved for the
execution of specific tasks. Operations managers re-
quire an explicit representation illustrating from when
to when resource are needed. This helps operations
managers in identifying potential bottlenecks as well
as in acquiring additional resources to prevent bottle-
necks.

R2 Consistency. Multiple tasks may have to be con-
ducted by the same resources. For example, the load-
ing and unloading task for a transportation process
must be conducted with the same vehicle. Operations
managers must be able to specify such requirements.

R3 Heterogeneity. In most operations heterogeneous
resources are available with different characteristics
and capabilities. For an efficient process execution it is
necessary that a resource request can be made based
on the required characteristics and capabilities of re-
sources. Therefore, operations managers must be able
to specify requirements on resources in multiple ways,
e.g., by providing an identifying name, by providing
the name of suitable roles, or by explicitly describing
the required capabilities of resources.

R4 Pooling. Multiple resources may be needed simulta-
neously to execute a task. For example, in a produc-
tion process, a semi-automatic machine and a human
operator may be simultaneously needed to execute a
task. Operations managers must be able to specify
such requests for pools of resources. Furthermore, it
must be possible to add and remove resources from
the pool when needed.

R5 Collaboration. It may be necessary to conduct
complex interactions with resources during process
execution. Operations managers must be able to spec-
ify such interaction with the requested resources by
modelling a suitable collaboration.

R6 Reactivity. Processes must be able to react on un-
predictable events or errors that may occur within the
scope of a required resource. For example, a process
waiting for a resource to become available should
have the possibility to react when being informed
that the requested resource encounters a problem.
The process should have the possibility to cancel the
request and proceed with some appropriate counter-
measure if necessary. Operations managers must be
able to specify such event-specific execution paths.

42

R7 Flexibility Resources can be allocated in different
ways, e.g., by manual decisions, by decision rules,
or by optimisation algorithms. Furthermore, multiple
requests may be consolidated before allocating the
resulting batch to a resource for efficient execution.
The process model should not impose limitations on
the allocation logic used and on whether requests shall
be consolidated before allocating a resource.

While some of the requirements, in particular, require-
ments R1 to R4 have already been considered in prior
work, the authors are not aware of any approach fulfilling
all of the above-mentioned requirements. In particular,
requirements R5 to R7 have received very little attention,
if any. From an operations management perspective these
requirements are of utmost importance because the need
to interact with resources and the need to react on events
arising within the scope of the resource are essential to
many operations as shown in the application examples in
a later section. Furthermore, the processes and respective
resource requirements should be modelled in such a way
that the models remain valid, even if decision processes for
resource allocations change or new technologies like 3D-
printers, for example, allow an efficient process execution
for individual process instances, although, traditionally,
batching of multiple production orders was necessary to
ensure an efficient production.
After presenting modelling patterns fulfilling these re-

quirements in the next section, Section 4 provides some
application examples showing how the requirements are
fulfilled by the proposed modelling patterns.

III. Modelling resource requirements with
Requests and Releases

Based on the seize-delay-release modelling pattern we
propose to fulfill the requirements stated above by using
dedicated activities for requesting and releasing resources.
The behaviour of these activities is represented by the
subprocesses shown in Figures 1 and 2. A request activity
is used to indicate that one or more resources are needed
for the process to continue. The release activity is used to
indicate that one or more resources are no longer needed
for the process instance and can be allocated to other
process instances.
The request activity starts with sending a message to

the resources required1. Each of these resources responds
with a ready message when the resource is available for
being used by the requesting process. In many cases, the
requested resources are not available promptly and the
requesting process has to wait until all resources are ready
to be used. When all requested resources have indicated
that they are ready, the request informs all involved
resources via a start message. From this moment on, the
requesting process knows which of the resources have been
assigned and can collaborate with each of them.

1Note that we use implicit start and end events for a compact
representation.

Request

Send
request

message

Send
start

message

Receive ready
message

Update

Update Notification

Revoke
request

Error

Error
message Failure

Fig. 1. Request activity

While waiting for the requested resources to become
ready, the request activity can react on status updates
provided by the resources. This is achieved using the
“Update” event-subprocess. A non-interrupting boundary
event can be attached to the request activity to react on
such notifications. For example, the resources may provide
information about the estimated time when the resources
will be available. In such cases the requesting process may
initiate adequate measures to prepare accordingly.
Furthermore, a resource can inform the process that

it has to reject the request, e.g., if it is unable to fulfil
the request. This is achieved using the “Error” event-
subprocess. The process can react on an error message
by terminating the request and initiating some alternative
actions.
Lastly, the requesting process can also interrupt the

request, e.g., when waiting too long for the resources to
become ready. This can be achieved using an interrupting
event attached to the boundary of the request activity.
Note that a process engine has to ensure that the request
is revoked whenever the request activity fails or is inter-
rupted.
Whenever the request is rejected or cancelled, a message

is sent to all requested resources to inform them that they
are no longer needed.
After a request is completed, all requested resources are

available to the process instance. The interaction with of
the process instance with the resources can be modelled
as a collaboration.
When the resources are no longer needed, the process

can release the resources using the release activity shown
in Figure 2. The release activity starts with sending a
message to all specified resources and indicates that the
process instance is at a state where the resource can be
released. When the resources are ready to be released, they
respond accordingly, and thereafter, the release activity
sends a message that the release of the resources may now
be completed. In many cases, resources will immediately
respond to a release message. However, in some cases it
may take some time until the resource is ready to complete

43

Release

Send
release

message

Send
completion
message

Receive ready
message

Update

Update Notification

Revoke
release

Error

Error
message Failure

Fig. 2. Release activity

the release. For example, if a request for a vehicle requires
that the vehicle transports goods from one place to an-
other, loading and unloading activities may be modelled
within the process requesting the transport. The transport
activity, however, is part of the process of the allocated
vehicle and details may differ depending on the type of
the vehicle. The process instance which had initiated the
request may send the release message directly after the
goods are loaded at the origin. The release can only be
completed when the transport activity is completed and
the vehicle has arrived at the destination. Thus, the vehicle
will only respond with the done message after completion
of the transport activity.
During the time that a process instance may have to

wait for the release to be completed, the process instance
can react on status updates and errors similarly to the
request activity. Additionally, the process may revoke the
release activity without waiting for a successful completion
to proceed. In this case, all resources receive a message
that the release activity has been revoked and can react
accordingly.
It is possible to use the request and release activities

shown in Figures 1 and 2 for modelling of processes
in which resources are required. However, modelling the
details of these activities would be cumbersome and im-
practical because many resource requirements may have to
be considered. We therefore propose a graphical extension
for BPMN 2.0 that simplifies the modelling of request
and release activities. In the graphical notation Requests
and Releases are depicted by three connected rectangles
representing a horizontal stack or queue. A Request is
drawn with normal line width, in analogy to a catching
event waiting for the requested resource(s). A Release is
drawn with a thick line, in analogy to a throwing event
returning the requested resource(s). Figure 3 shows an
example using the proposed graphical notation that can
be used to model resource-constrained business processes.
In the figure, the process starts with requesting a re-

source using a request activity. When the requested re-
source is ready, the process can proceed with a subprocess

Request
resource

Release
resource

Do something

Fig. 3. Graphical representation of requests and releases

collaborating with the resource. After completion of this
subprocess, the process releases the resource by a release
activity.
If multiple resources with different characteristics are

available, the requested resources can be specified by their
distinctive names or the description of their required roles
or capabilities.
The boundary events shown in Figures 1 and 2 can

be attached to the request and release activities like for
normal activities. This allows the modeller, e.g., to use an
interrupting timer event to abort the request if too much
time has passed before the resource is provided. Similarly,
an interrupting error event can be applied to consider
the possibility that the request is rejected by a resource.
Any interrupting boundary event results in a cancellation
of the request and triggers the compensation shown in
Figure 1 to revoke the request. Moreover, non-interrupting
boundary events can also be used, e.g., to initiate certain
tasks if a requested resource is not allocated within a
certain time limit, but the process shall continue waiting
for the allocation of the requested resource.
When a notification from the resource is received, a

non-interrupting boundary event can be used to react on
this notification. For example, an interrupting escalation
event attached to the boundary of the request activity can
be used to interrupt the request when a notification is
received from the resource that it cannot serve the request
within a reasonable amount of time.
In some resource-constrained business processes, the

requested resources are consumables that can only be used
once. The consumption of resources can easily be modelled
by using a request for the consumable resource without a
subsequent release.

IV. Application examples
This section showcases application examples in which

the requests and release activities presented above can be
used to model resource requirements typically found in
operations management. The modelling pattern has also
been applied on a variety of other use cases related to
production, transportation, and inventory management.

A. Batch Transport
Figure 4 shows a manufacturing process requiring a

transport of a semi-finished good from one production
stage to another. After the semi-finished good is produced
in the first production stage, a transport to the second
production stage is requested. Directly afterwards, the
transport resource is released and the process waits for

44

the resource to confirm the release. After that, the pro-
duction process continues with production at the second
production stage.
From the perspective of the manufacturing process, it is

not important how the semi-finished good is transported
from one stage to another. It is only important to ensure
that a suitable resource is available to conduct the trans-
port. For an efficient transport, however, it may be benefi-
cial to consolidate multiple transport requests for a batch
transport. In the example shown in the figure, the batch
transport process collects multiple transport requests until
a batch is ready. Then all requests are informed that the
batch is ready and, when all requests have responded with
the start message, the batch transport is conducted. After
completion of the batch transport, the release messages
are received 2 for each item in the batch and each of the
release activities is informed that the transport is done
and the release can be completed. The transport process
ends after all release activities have responded with the
completion message.
B. Healthcare
Figure 5 shows a healthcare process for a patient re-

quiring an emergency surgery at a hospital. The process
starts with a request for a surgeon, nurse, assistant, and an
operating theatre. Unlike in the production request illus-
trated before, it is important that all of these resources are
allocated simultaneously. This allows an allocation engine
or a human planner to identify that all requested resources
are needed simultaneously. Thus, resource allocation plans
can be determined accordingly and unproductive times
of scarce and expensive resources can be avoided. When
all of the requested resources are ready, the surgery can
start. The details of the surgery can be modelled as a
collaboration diagram between the different resources. To
ensure that only such surgeons, nurses, and assistants are
allocated to the request are capable of collaborating in the
surgery, the request can specify the required qualifications.
After the surgery is completed, the surgeon, nurse, and
operating theatre are released and the assistant moves the
patient to a hospital room before being released as well.
If the required resources are not immediately available,

it is possible that the patient deceases. In this case, the
requested resources are no longer required, however, a
physician must issue the death certificate. In this case
any available physician can issue the death certificate,
including the surgeon who might have been allocated to
the initial request. However, the surgeon may also be
assigned to another process instance where he or she may
be needed more urgently. The urgency of the tasks can be
provided as additional parameters of the model.

V. Discussion
The examples provided in the previous section show how

the different requirements identified earlier can be fulfilled
2Note, that we assume that messages are persistent.

with the proposed modelling patterns for requests and
releases. By using the proposed graphical representation,
the effort for the modeller is significantly reduced and
process execution engines can identify that the modelling
pattern is used.
A benefit of this explicit way of modelling resource

requirements is that it highlights those parts of a process
that are dependent on the availability of suitable resources.
The visual representation makes it easy for operations
managers to identify when which resources are needed.
It helps identifying potential causes of delays and ineffi-
ciencies, e.g., if resources are not available when needed
or if resources are being held unnecessarily without being
needed. Also it gives operations managers the power to
adjust the resource requirements according to the specific
business needs.
Figures 6 and 7 show two alternative processes request-

ing one type of resource to conduct two subsequent activi-
ties. The process shown in Figure 6 comprises a dedicated
request and release for the two activities. The process
shown in Figure 7 requests a resource, conducts the two
activities, and eventually releases the resource. Despite
their similarity, both processes can have a fundamentally
different performance. The process shown in Figure 6
allows that the resource can conduct activities for other
process instances between conducting the first and second
activity of a particular instance. This can be particularly
useful in case additional urgent requests become known
after the resource is initially allocated. For the process
shown in Figure 7, on the other hand, we can be sure
that for all process instances the resource conducts the
second activity immediately after the first. Thus, requests
from other process instances have to wait until the second
activity is completed. However, the makespan, which is the
time between the start of the first activity and the end of
the second activity, is minimised for all process instances.
Depending on the particular business needs, an operations
manager may want to explicitly decide for one or the
other way of defining resource requirements in business
processes.
In the Batch Transport example presented above, we

modelled the interaction with the transport resource as-
suming that the process requiring transportation knows
which particular resource it requests and sends a request
message directly to this resource. We did so mainly for
simplicity, and want to note that in most real-life cases,
we would use indirect requests and releases via a broker
of resources. We can use a resource manager as a broker
and send all resource request and release messages via
this resource manager [16]. The resource manager will
allocate suitable resources to the requests and manage
the information flow between requests and releases on
one side and the resources on the other side. Thus, the
Manufacturing process shown in Figure 4 would not be
in direct collaboration with the Batch Transport pro-
cess. Instead, a resource manager would check whether

45

Fig. 4. Batch transport

Fig. 5. Healthcare process

Request resource Request resourceRelease resource Release resource

Activity 1 Activity 2

Fig. 6. Two subsequent activities with dedicated resource requests

Request resource Release resource

Activity 1 Activity 2

Fig. 7. Two subsequent activities with a single resource request

a suitable resource is available to conduct the transport.
This could be the resource providing the Batch Transport
process or any other suitable resource, e.g., a resource
with smaller capacity that can only provide dedicated
transport of individual requests. From the perspective of
the Manufacturing process, any suitable resource would
be equally good, however, in some cases an allocation to
one resource would be more cost efficient, and in other
cases, an allocation to another resource would be more
cost efficient. The resource manager, which could be a

human or an algorithm, can base the allocation decision
on different criteria. The simplest allocation mechanism
would operate according to a first-come first-serve policy.
That is, the first request is allocated to the first suitable
resource. More sophisticated allocation mechanism would
be priority-based decision rules or rules based on suitable
performance metrics. Furthermore, powerful operations re-
search techniques, in particular, from the area of resource-
constrained scheduling [17] can be used to improve the
overall operational performance.
Our modelling patterns simplifies the translation of

business process models into mathematical optimisation
problems that can be used to determine highly efficient
execution schedules. In fact, providing the basis for the
application of operations research techniques for improv-
ing the performance of business process models is one
of the core motivations for this paper. Besides this, our
modelling pattern also bridges the gap between standard
BPMN 2.0 and typical discrete-event system simulation
models in which resource requirements play a central role

46

and request-release patterns are well accepted modelling
elements.

VI. XML-Extension and implementation
We implemented the proposed notation for requests and

releases using the BPMN 2.0 extension mechanism. In
particular, request and release activities are modelled as
BPMN subprocesses with a custom attribute indicating
the type as shown below.
<bpmn2:subProcess id="some_id" resources:type="Request">

and
<bpmn2:subProcess id="some_id" resources:type="Release">

In our implementation we assume that at run time
resources are dynamically allocated to requests via a
resource manager. In order to allow the resource manager
to allocate suitable resources, additional data must be
provided. Here, we assume that such data can be made
available via status attributes that can be arbitrarily
defined and modified throughout process execution. These
status attributes can be defined on the process level as
follows.
<bpmn2:process id="some_process">

<extensionElements>
<execution:status>

<execution:attribute id="some_id"
↪→ name="some_attribute" type="xs:decimal"
↪→ value="3.14" />
<execution:attribute id="other_id"

↪→ name="other_attribute" type="xs:integer" value="42"
↪→ />

</execution:status>
</extensionElements>

</bpmn2:process>

A <execution:status> block can contain any number of
<execution:attribute> elements. Each <execution:attribute>
must specify a unique name and the data type, e.g.,
type="xs:integer" or type="xs:decimal". Optionally, a value
can be given by adding an attribute value that is to be
used across all process instances or by providing the value
on an instance level via a separate input.
We assume that each request activity can make multiple

requests for different resource allocations. Each request
provides a vector of values xj describing the requirements
of the job j that the resource must conduct. It is assumed
that for each resource r a function fr(xj) is available that
returns true if and only if the resource r is capable of
conducting the job. The data is provided as follows.
<bpmn2:subProcess id="some_id" resources:type="Request">
<bpmn2:extensionElements>
<execution:allocations>
<execution:request id="some_request_id">
<execution:job>
<execution:content id="a_content_id" key="a_key"
↪→ attribute="some_attribute_name" />
<execution:content id="another_content_id"
↪→ key="another_key"
↪→ attribute="another_attribute_name" />

</execution:job>
</execution:request>

</execution:allocations>
</bpmn2:extensionElements>

</bpmn2:subProcess>

For each request activity, a set of resource allocation
requests is stored in an element <execution:allocations>.
The data for each requested resource is stored in an
element <execution:request> with a unique identifier. Each
request contains an element <execution:job>, listing the
characteristics of the job to be conducted as key-value
pairs. The description of the characteristics is as general
as possible to allow to provide identifiers of particular
resources, the name of a role that a resource must provide,
or general requirements, e.g. the width, height, length, and
weight of an item to be shipped. Thus, different resource
allocation patterns as proposed by [18] can be supported.
The release activities are defined as follows.

<bpmn2:subProcess id="some_id" resources:type="Release" >
<bpmn2:extensionElements>
<execution:allocations>
<execution:release request="a_request_id">
<execution:release request="another_request_id">

</execution:allocations>
</bpmn2:extensionElements>

</bpmn2:subProcess>

Each release activity provides information on which
resources are to be released by custom extension elements.
The list of resource allocations to be released is stored
in an element <execution:allocations>, which contains ele-
ments <execution:release> that specify the identifier of the
request to be released in the attribute request.
A prototype of a modeller allowing to model such

resource requirements is available online at https://bpmn.
telematique.eu. This prototype already includes a model
to describe capabilities of resources and data concerning
the status of a resource in order to assess the value of a
resource allocation. A description of this resource model,
however, is out of scope of this paper which focuses on the
modelling of resource requirements.

VII. Final Remarks
This paper shows how typical resource requirements

from operations management can be included in business
process models in order to help operations managers to
effectively balance the tradeoffs between efficient resource
utilisations and process performance. We propose mod-
elling patterns of requests and releases and propose a
graphical representation as an extension to BPMN 2.0.
With the dedicated activities for requesting and releasing
resources, our extension allows operations managers to
explicitly model resource requirements in business process
models. Several application examples are provided illus-
trating how the proposed modelling pattern can be used.
The proposed modelling pattern allows operations man-

agers to easily identify process delays caused if no suitable
resource is available at the time requested (R1 Avail-
ability). Where necessary, operations managers can use
this insight to identify possibilities of improving process

47

performance by redesigning the temporal dependencies on
resources or by providing additional resources.
The proposed modelling pattern allows to ensure that

the same resource is available for multiple activities
modelled between the request and release of a resource
(R2 Consistency).
To allow a high level of flexibility we did not make

any assumptions on the behaviour or nature of resources,
except that resources must be capable of collaborating
with request and release activities. Different resources with
different characteristics can be arbitrarily modelled and
allocated to requests at run time (R3 Heterogeneity).
Processes requiring that multiple resource are simulta-

neously available can be considered by requesting multiple
resource within the same request activity (R4 Pooling).
As our modelling patterns assume that resources are

provided through dedicated process models, complex col-
laborations between process instances requiring one or
multiple resources and those providing resources can be
easily modelled (R5 Collaboration).
By allowing to use catching events attached to the

boundary of requests and releases, it is possible to react on
unforeseen events or delays. This allows, for example, to
interrupt a request if no resource can be allocated within a
reasonable amount of time or if a resource that is allocated
experiences an error (R6 Reactivity).
The modelling pattern proposed provides full flexibility

with regard to the mechanisms used to allocate resources.
Resource allocations can be made manually, using simple
decision rules or heuristics, or even powerful optimisation
methods (R7 Flexibility).
At the time of writing this paper, we are extending the

modeller and XML-schema in such a way that additional
data required for process execution can be included. Also,
we are developing a process execution engine capable of
automatically allocating suitable resources to requests at
run time. Furthermore, an approach for automatically
translating such resource-aware business process models
into a mixed integer programming formulation stating a
novel resource-constrained scheduling problem is currently
developed and, in the future, we want to develop algo-
rithms for optimising resource allocations based on the
BPMN 2.0 extensions presented in this paper.

References
1. W. Stevenson, Operations management. McGraw-Hill

Higher Education, 2014.
2. S. Bhasin, Lean management beyond manufacturing

.Springer, 2015.
3. Y. Monden, Toyota production system: an integrated ap-

proach to just-in-time. Productivity Press, 2011.
4. Object Management Group, “Business Process Model

and Notation (BPMN) 2.0.2,” http://www.omg.org/spec/
BPMN/2.0.2/PDF (last accessed May 6, 2022), 2013.

5. G. Havur, C. Cabanillas, J. Mendling, and A. Polleres,
“Resource allocation with dependencies in business pro-
cess management systems,” in International Conference on
Business Process Management. Springer, 2016, pp. 3–19.

6. C. Cabanillas, M. Resinas, and A. Ruiz-Cortés, “Ral:
A high-level user-oriented resource assignment language
for business processes,” in Business Process Management
Workshops, F. Daniel, K. Barkaoui, and S. Dustdar, Eds.
Springer, 2012, pp. 50–61.

7. C. Cabanillas, D. Knuplesch, M. Resinas, M. Reichert,
J. Mendling, and A. Ruiz-Cortés, “RALph: a graphical
notation for resource assignments in business processes,”
in International Conference on Advanced Information Sys-
tems Engineering. Springer, 2015, pp. 53–68.

8. C. Cabanillas, M. Resinas, J. Mendling, and A. Ruiz-
Cortés, “Automated team selection and compliance check-
ing in business processes,” in Proceedings of the 2015
International Conference on Software and System Process,
ser. ICSSP 2015. Association for Computing Machinery,
2015, p. 42–51.

9. Workflow Management Coalition, “BPSim - Business
Process Simulation Specification,” Document Number
WFMC-BPSWG-2012-1, 2013.

10. R. Laue and C. Mueller, “The business process simulation
standard (BPSIM): Chances and limits,” in Proceedings
30th European Conference on Modelling and Simulation,
T. Claus, F. Herrmann, M. Manitz, and O. Rose, Eds.,
2016.

11. B. S. S. Onggo, N. Proudlove, S. D’Ambrogio, A. Cal-
abrese, S. Bisogno, and N. Levialdi Ghiron, “A BPMN
extension to support discrete-event simulation for health-
care applications: an explicit representation of queues,
attributes and data-driven decision points,” Journal of the
Operational Research Society, vol. 69, no. 5, pp. 788–802,
2018.

12. L. Pufahl and M. Weske, “Batch activities in process
modeling and execution,” in International Conference on
Service-Oriented Computing. Springer, 2013, pp. 283–297.

13. G. . Gordon, “A general purpose systems simulation pro-
gram,” in AFIPS ’61: Proceedings of the Eastern Joint
Computer Conference. Association for Computing Ma-
chinery, 1961.

14. G. Wagner, “Business process modeling and simulation
with DPMN: Resource-constrained activities,” in Proceed-
ings of the 2020 Winter Simulation Conference, K.-H. Bae,
B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder,
and R. Thiesing, Eds., 2020.

15. L. Pufahl, S. Ihde, F. Stiehle, M. Weske, and I. We-
ber, “Automatic resource allocation in business pro-
cesses: A systematic literature survey,” arXiv preprint
arXiv:2107.07264, 2021.

16. S. Ihde, L. Pufahl, M. B. Lin, A. Goel, and M. Weske, “Op-
timized resource allocations in business process models,”
in Business Process Management Forum, T. Hildebrandt,
B. F. van Dongen, M. Röglinger, and J. Mendling, Eds.
Springer, 2019, pp. 55–71.

17. S. Hartmann and D. Briskorn, “A survey of variants and
extensions of the resource-constrained project scheduling
problem,” European journal of operational research, vol.
207, no. 1, pp. 1–14, 2010.

18. N. Russell, A. H. M. Ter Hofstede, W. M. P. van der Aalst,
and D. Edmond, “Workflow resource patterns,” BETA
Working Paper Series, WP 127. Eindhoven University of
Technology, 2004.

48

