
Proceedings of the 2022 Winter Simulation Conference
B. Feng, G. Pedrielli, Y. Peng, S. Shashaani, E. Song, C.G. Corlu, L.H. Lee, E.P. Chew,
T. Roeder, and P. Lendermann, eds.

TOWARDS A UNIFYING FRAMEWORK FOR MODELING, EXECUTION,
SIMULATION, AND OPTIMIZATION OF RESOURCE-AWARE BUSINESS

PROCESSES

Asvin Goel

Kühne Logistics University
Großer Grasbrook 17

20457 Hamburg, GERMANY

ABSTRACT
This paper proposes an extension to BPMN 2.0 to be used within a framework allowing to execute
and simulate resource-aware business processes. The framework consists of three core components:
a data provider responsible for acquiring all relevant information, an execution engine responsible for
advancing process execution according to the respective execution logic, and a controller responsible
for making all decisions required during process execution. The data provider and controller can be
easily replaced depending on the use case and the entire execution logic is encapsulated within the
execution engine. The framework is designed in such a way that it allows any decision mechanism
to be deployed ranging from manual decision making to sophisticated optimization algorithms.

1 INTRODUCTION AND RELATED WORK
In order to improve the performance of business operations many companies apply methods and tools
developed in the fields of Business Process Management, Discrete-Event System Simulation, and
Optimization. From the field of Business Process Management, the so-called Business Process Model
and Notation (BPMN 2.0) (Object Management Group 2013) has become a standard in modelling
business processes using a graphical notation that is easy to learn and use. Unfortunately, BPMN 2.0
has severe limitations concerning the consideration of resource requirements. While BPMN 2.0 allows,
to some extend, to specify resources that are needed for subprocesses and tasks, there is no way of
ensuring that the required resources are actually available when executing business processes. In
Discrete-Event System Simulation, resources play a central role and are usually modelled as entities
that can accept a limited number of work items. Resources are usually equipped with queues that
can hold work items which have to wait until the resource becomes available to accept the work item.
Although graphical notations used for Discrete-Event System Simulation share some similarities
with BPMN 2.0, a translation from one notation to another is often not straight-forward. Both
BPMN 2.0 and Discrete-Event System Simulation are not designed to find decisions that contribute
to the optimization of performance goals, in particular, regarding the assignment and allocation of
resources. In the field of Optimization, a multitude of models and algorithms have been developed
allowing to optimize the assignment and allocation of resources. These models are usually based
on Mixed-Integer Programming and efficient algorithms are often tailor-made for the respective
problem. Although, such optimization techniques can bring substantial performance improvements,
developing models and algorithms is often a prohibitively expensive task preventing widespread
utilization.

The potential of enriching BPMN 2.0 in such a way that it allows for Discrete-Event System
Simulation has been identified early and several approaches have been proposed. With the Business
Process Simulation Specification (BPSim) (Workflow Management Coalition 2013), for example, it



Goel

is possible to specify simulation-relevant data such as resource roles, quantities, and availabilities.
Pufahl et al. (2017) propose an architecture of a BPMN process simulator which maps BPMN
constructs into a Discrete-Event Simulation model. Onggo et al. (2018) propose to extend BPMN 2.0
introducing the concept of Shared Tasks which are used to indicate tasks that share the same resource
with a limited capacity. Pufahl and Weske (2013) propose an execution semantics for so-called Batch
Activities allowing to dynamically generate batches across multiple process instances. Wagner (2020)
proposed so-called Resource-constrained Activities which are visually represented through markers
on incoming sequence flows and Wagner (2021) discusses the use of so-called Processing Activities
which are a resource-constrained activities that are performed at a processing station. In all of
these works, resources are assumed to be entities with a predefined set of characteristics which are
required for process execution. In contrast to other work, this paper takes a novel view on resources
by modelling them through so-called Resource Activities comprising several subprocesses describing
the characteristics and behaviour of the resources. As these subprocesses can be arbitrarily provided
by the modeller, the proposal has a high flexibility with respect to the type of resources that can
be modelled. Resource Activities can be included in business process models just like any other
activities and the allocation of resources can be viewed as the initiation of a collaboration between
different processes subject to a specific choreography. Request Activities and Release Activities, as
proposed by Goel and Lin (2022), allow an allocation of resources similar to the Seize-Delay-Release
modelling pattern used in GPSS (Gordon 1961).

This paper seeks at contributing towards a unifying framework for modelling resource-aware
business processes that is capable of executing and simulating these processes and optimizing resource
allocations using different approaches ranging from manual decisions to sophisticated optimization
algorithms. After presenting an extension for BPMN 2.0 allowing to model resources and resource
requirements, this paper proposes a flexible architecture of the framework based on the observer
design pattern and presents an example use case demonstrating the applicability.

2 RESOURCE-AWARE BUSINESS PROCESSES
In order to model resource requirements in business process models, Goel and Lin (2022) proposed
to extend BPMN 2.0 by introducing so-called Request Activities and Release Activities. Request
Activities indicate that one or more resources are requested and must be allocated to the requesting
process before it can continue, whereas Release Activities indicate that one or more resources
previously requested are no longer required. These modelling elements are represented by three
connected squares representing a horizontal stack or a queue as shown in Figures 1a and 1b. Request
Activities are drawn with normal line width and Release Activities are drawn with thick line width.

(a) Request Activity (b) Release Activity

Release ActivityRequest Activity

(c) Resource Activity

Figure 1: Additional modelling elements for resource-aware business processes.

The behaviour of Request Activities and Release Activities is illustrated by the subprocesses shown
in Figures 2a and 2b. A Request Activity can simultaneously request one or multiple resources. It
sends a request message to each resource allocated, waits until all resources are ready to be used and
have sent a ready message, and then, sends a start message to all allocated resources. If any of the
resources sends an error message, the Request Activity terminates with a failure. Before termination,
however, a message is sent to all allocated resources that the respective request is revoked. Similarly,
if the Request Activity is interrupted, e.g. by an interrupting event attached to the boundary, all



Goel

Request Activity

Send
request

message

Send 
start

message

Receive ready 
message

Update

Update Notification

Revoke
request

Error

Error
message Failure

(a) Request Activity

Release Activity

Send
release

message

Send 
completion
message

Receive ready 
message

Update

Update Notification

Revoke
release

Error

Error
message Failure

(b) Release Activity

Figure 2: Behaviour of Request Activities and Release Activities (Goel and Lin, 2022).

requests are revoked. A Release Activity behaves analogously, but sends a release message to all
resources that are no longer needed.

Goel and Lin (2022) focussed on representing resource requirements and did not detail the
modelling of resources except for the requirement, that they must be able to adequately exchange
messages with Request Activities and Release Activities. In order to facilitate an automated allocation
of resources to requests, the allocation mechanism needs to be able to identify resource models and
their characteristics. This requires to include additional information. Before showing how this
information can be provided, we first have to note that resources relate to processes in different ways.
On the one hand, resources can be used by other processes or can provide services requested by other
processes. On the other hand, resources may have to conduct their own subprocesses and can be
provided by and within business processes. Furthermore, resources may require the support of other
resources in order to provide a service to a requesting process. For example, a truck requires a trailer
to be able to transport shipments. To support a variety of resources with different characteristics,
this paper proposes to model resources as dedicated modelling elements to be used within business
process models. These modelling elements are named Resource Activities and a stylized conveyor
belt as shown in Figure 1c is proposed as graphical representation. A Resource Activity can be
included within the sequence flow of any process model just like any other activity.

The behaviour of Resource Activities is illustrated by the subprocess shown in Figure 3. Each
Resource Activity comprises multiple subprocesses that can be specified by the modeller: a Default
subprocess, a Prepare subprocess, a Service subprocess, and a Finish subprocess. When a Resource
Activity receives a token from a process execution engine, the Default subprocess is initiated. As
long as the Default subprocess is alive, the resource can be allocated to requests. Note, that the
mechanism to allocate resources to requests is not specified in the model. Later in this paper, we
will discuss how resources can be allocated to requests. When a resource is allocated to a request, a
request message is sent from the respective Request Activity describing the job that is to be performed
by the resource. The Prepare subprocess is executed by the resource to ensure that the resource
can actually fulfil the requirements as requested. After completion of the Prepare subprocess, a
ready message is sent to the respective Request Activity. The Request Activity responds with a
start message, when all requested resources are ready. Should the request be revoked before the
start message is received, the resource immediately initiates the Finish subprocess described later.
Otherwise, the Service subprocess is conducted which can implement any predefined choreography
with the requesting process. Simultaneously, the Resource Activity awaits a release message. When
the Service subprocess is completed and the release message is obtained, a ready message is sent to
the respective Release Activity. The Release Activity responds with a completion message, when all



Goel

allocated resources have completed the Service subprocess. Thereafter, the resource conducts the
Finish subprocess. Note that, if any of these support subprocesses of a Resource Activity are not
needed, they can be assumed to be empty processes that immediately terminate after being invoked.
Should an uncaught error occur during execution of any of these support subprocesses, the Resource
Activity terminates with an error. Before termination, however, the Failure event-subprocess is
executed, sending an error message to all processes that requested the resource.

Resource Activity

Allocation

FinishServicePrepare

Failure

Send failure 
messageDefault

Release message

Request
allocated

Revoke
message

Ready
message

Completion
message

Ready
message

Start
message

Figure 3: Behaviour of Resource Activities.

To allow for automatic execution of process instances, we will use the notion of tokens moving
through the process models to represent the state of the system. For each token a set of status
attributes is available. Throughout process execution, the values of these attributes can be modified
using operators and the set of permissible values can be constrained by restrictions.

Each token is associated with a set of status attributes which can be declared within process
models using the BPMN 2.0 extension mechanism as shown below.
<extensionElements>
<execution:status>
<execution:attribute name="some_attribute" type="xs:string" />
<execution:attribute name="other_attribute" type="xs:decimal" objective="maximize" weight="1"/>

</execution:status>
</extensionElements>

Within an <execution:status> block, any number of status attributes can be provided. Each
<execution:attribute> element requires the attributes name and type to be provided. The name attribute
defines a name that must be unique within the scope of the token and that can be used to refer to
the attribute during execution of a particular process instance. The type attribute defines the data
type and can be set to "xs:string", "xs:integer", "xs:decimal", or "xs:boolean".

The objective attribute is optional and indicates whether the status attribute contributes to a
global objective which is to maximize all status attributes with objective="maximize" and minimize all
status attributes with objective="minimize". The tradeoff between different objectives can be indicated
by specifying different weight attributes to set the multiplier in a weighted sum of objectives.

The values of status attributes can be constrained by restrictions added to process models as
shown below.
<extensionElements>
<execution:restrictions>
<execution:restriction attribute="some_attribute_name" negate="true">



Goel

<execution:enumeration value="Apple"/>
<execution:enumeration value="Orange"/>

</execution:restriction>
<execution:restriction attribute="another_attribute_name" required="true">
<execution:minInclusive value="0"/>
<execution:maxInclusive value="100"/>

</execution:restriction>
</execution:restrictions>

</extensionElements>

Within an <execution:restrictions> block, any number of restrictions can be provided. Each
<execution:restriction> element requires an attribute attribute indicating the name of the status
attribute to be restricted. A restriction may have the optional boolean attribute required indicating
whether the given status attribute must be defined. Furthermore, restriction may have the optional
boolean attribute negate indicating whether the outcome of the restriction is to be negated. If both
required and negate are "true", the given status attribute must not be defined. Furthermore, any
number of <execution:enumeration> elements can be added to a restriction each giving a value that the
given status attribute is allowed to take (or must not take in case negate="true"). The given status
attribute can be constrained to a value larger or equal to a value given in a <execution:minInclusive>
element or to a value smaller or equal to a value given in a <execution:maxInclusive> element. A
negation allows to model strictly larger than or smaller than restrictions.

At every node in a process model, the values of status attributes can be modified by operators
added to the node as shown below.
<extensionElements>
<execution:operators>
<execution:operator name="expression" attribute="volume">
<execution:parameter name="expression" value="height*width*length" />

</execution:operator>
<execution:operator name="lookup" attribute="distance">
<execution:parameter name="source" value="distanceTable" />
<execution:parameter name="origin" value="current_location" />
<execution:parameter name="destination" value="customer_location" />

</execution:operator>
<execution:operator name="random" attribute="duration">
<execution:parameter name="distribution" value="exponential" />
<execution:parameter name="lambda" value="rate" />

</execution:operator>
<execution:operator name="choice" attribute="x" />

</execution:operators>
</extensionElements>

Within an <execution:operators> block, any number of operators to be executed in the given
order can be provided. Each <execution:operator> element requires an attribute attribute indicating
the name of the status attribute in which the result obtained by applying the operator is stored.
Furthermore, an attribute name indicating the name of the operator to be applied. The operator
name can be "expression", "lookup", "random", or "choice". A list of <execution:parameter> elements
with name and value attributes can be provided for each operator. Additional operators using the
same parameter definitions can be implemented by custom tools.

The "expression"operator expects anelement <execution:parameter>withattribute name="expression"
and value being the expression to be applied. The example above determines the value of the at-
tribute with name "volume" by multiplying the attribute values of the attributes with names "height",
"width", and "length". The "lookup" operator expects an element <execution:parameter> with attribute
name="source" and value being the name of the lookup function. For each required input parameter
of the lookup function, an <execution:parameter> element with attribute name indicating the name



Goel

of an input parameter and attribute value indicating the respective name of the status attribute
to be used as parameter are required. The example above determines the value of the attribute
with name "distance" using a lookup function named "distanceTable" that expects the parameters
"origin" and "destination" which are stored in the status attributes named "current_location" and
"customer_location". Custom tools implementing the framework can provide any kind of lookup
function required. The "random" operator expects a parameter with name distribution, and other
distribution-dependent parameters. The example above determines the value of the attribute with
name "duration" using an exponential distribution with the parameter named "lambda" that is set to
value of the attributes with name "rate". The set of random operators can be arbitrarily extended
by custom implementations. The "choice" operator requires a decision to be made. In the example
above, the decision made is stored in the attribute with name "x". The set of possible choices that
can be taken is determined by the the data type of the respective attribute and can be further
constrained by adding respective restrictions.

For every Resource Activity a list of key-values pairs must be provided specifying the information
required from any request to which the resource is allocated as shown below.
<extensionElements>
<execution:job>
<execution:content key="a_key" attribute="an_attribute_name" />
<execution:content key="another_key" attribute="another_attribute_name" />

</execution:job>
</extensionElements>

Within an <execution:job> block, any number of <execution:content> elements can be given,
providing a dictionary translating each key of the job description given with a request message into
the attribute of the token status of the respective Allocation event-subprocess shown in Figures 3.

For each Request Activity a list of requested resource allocations can be provided as shown below.
<extensionElements>
<execution:allocations>
<execution:request id="some_id">
<execution:job>
<execution:content key="a_key" attribute="an_attribute_name" />
<execution:content key="another_key" value="a_value" />

</execution:job>
</execution:request>

</execution:allocations>
</extensionElements>

Within the <execution:allocations> element any number of <execution:request> elements can be
provided describing individual requests for resources. For each <execution:request> a unique identifier
must be provided in the attribute id. The <execution:job> block is used to describe the characteristics
of the job to be conducted by the resource. A request message is created based on the key-value
pairs specified through the <execution:content> elements provided for each job.

For each Release Activity a list of resource allocations to be released must be provided. The
requested allocations to be released can be added to as shown below.
<extensionElements>
<execution:allocations>
<execution:release request="a_request_id"/>
<execution:release request="another_request_id" />

</execution:allocations>
</extensionElements>



Goel

Within the <execution:allocations> element any number of <execution:release> elements can be
provided. Each <execution:release> must provide the identifier of the request to be released in the
attribute request.

3 EXECUTION AND SIMULATION FRAMEWORK
This section describes a framework allowing to execute, simulate, and optimize process instances for
resource-aware business process models using Resource Activities, Request Activities, and Release
Activities, as well as status attributes, operators, and restrictions as described above. The proposed
architecture is based on the observer design pattern and illustrated as an UML component diagram
in Figure 4.

ExecutionEngine
(token flow, status attributes)

Controller
(time, start and end of

subprocesses and tasks,
choices, resource allocations)

DataProvider
(resource-aware process models,

process instances)

decisions

token updates

instance data

Figure 4: Core components of the framework.

The data provider reads all process models and instance data. It allows observers to subscribe
to updates. Whenever new or modified instance data becomes available, all observers are notified
allowing them to update their data accordingly.

The execution engine subscribes to the data provider to receive information about all process
instances. Furthermore, the execution engine subscribes to a controller to receive the current time
of the execution as well as all other decisions that must be made throughout process execution.
Whenever the execution engine receives a new time or decision from the controller, the provided
information is implemented accordingly and the execution engine advances process execution as far
as it can on its own. The execution engine allows observers to subscribe to updates concerning the
token flow. Whenever the state of the token changes or status attributes are modified, all observers
are notified allowing them to react accordingly. Decisions that may have to be taken during process
execution, i.e., decisions on whether to advance in time, whether to start or end a subprocess or
task, which choice to be taken and which resource to allocate to a request, are not made by the
execution engine.

Instead, the controller decides whether to advance in time or whether to take a decision that
is necessary for the execution engine to proceed with process execution. The controller subscribes
to the data provider to receive information about all process instances and the execution engine to
receive information about the progress of process execution. Based on this information, the controller
makes the decisions by any reasonable approach. Different controllers can be developed making
decisions in different ways. For example, a controller can be developed that provides a dashboard
for a human decision maker showing all necessary information. Alternatively, a controller can be



Goel

developed that applies appropriate rules for certain decisions that have to be taken, or a controller
can make decisions using an appropriate optimization technique. Any controller allows observers
to subscribe to all decisions made by the controller. Whenever a decision is made, all observers are
notified allowing them to react accordingly.

The observer design pattern makes it easy to exchange specific implementations of the core
components. For example, different controllers can be developed for different use cases without
having the need to adapt the execution engine or the data provider. Furthermore, the observer
design pattern makes it easy to integrate further components subscribing to the core components,
e.g., a logger or performance analyzer.

4 EXAMPLE USE CASE: SHARED TAXI SERVICES
This section provides an example use case showing how the proposed framework can be used to
execute, simulate, and optimize shared taxi services modelled by resource-aware business process
models.

Figure 5 illustrates the process providing a Resource Activity representing a taxi. At the end of
the process the Return to depot task ensures that each taxi eventually returns to the depot.

Taxi

Return to depot

Figure 5: Process providing the taxi resource.

For each process instance, the data provider initializes the following status attributes: the
attribute time gives the time at which the taxi begins service, the attribute seats gives the number
of passenger seats of the taxi, the attribute speed gives the average speed of the taxi, the attribute
fare gives the distance-based fare of the taxi, the attribute cleaning duration gives the duration
required to desinfect a used seat, the attributes depot x and depot y give the coordinates of the
taxi depot, and the attribute latest allocation gives the time when the taxi stops to offer the
service.

When the process is initiated, the execution engine determines the current location of the taxi
(stored in status attributes current x and current y) and the number of free seats (stored in status
attribute free seats) by applying the following expression operators.
<execution:operators>
<execution:operator attribute="current_x">
<execution:parameter name="expression" value="depot_x" />

</execution:operator>
<execution:operator attribute="current_y">
<execution:parameter name="expression" value="depot_y" />

</execution:operator>
<execution:operator attribute="free_seats">
<execution:parameter name="expression" value="seats" />

</execution:operator>
</execution:operators>

A restriction ensures that the value of the attribute free seats never falls below zero.
<execution:restrictions>
<execution:restriction attribute="free_seats">
<execution:minInclusive value="0" />

</execution:restriction>
</execution:restrictions>



Goel

Thetaxi resourceaccepts requestmessages thatprovide the statusattributespickup x, pickup y,
dropoff x, dropoff y, and passengers to be used with the Allocation event-subprocess illustrated
in Figure 3 which are specified for the Resource Activity as follows.
<extensionElements>
<execution:job>
<execution:content key="PickupX" attribute="pickup_x" />
<execution:content key="PickupY" attribute="pickup_Y" />
<execution:content key="DropoffX" attribute="dropoff_x" />
<execution:content key="DropoffY" attribute="dropoff_Y" />
<execution:content key="Passengers" attribute="passengers" />

</execution:job>
</extensionElements>

A status attribute distance with objective="minimize" and weight="1" indicates the Manhattan
distance for the return trip from the current taxi location to the depot location. When conducting
the Return to depot task, the distance, arrival time at the depot location, and the location of the
taxi are determined using the following expression operators.
<execution:operators>
<execution:operator attribute="distance">
<execution:parameter name="expression" value="abs(depot_x␣-␣current_x)␣+␣abs(depot_y␣-␣
↪→ current_y)" />

</execution:operator>
<execution:operator attribute="time">
<execution:parameter name="expression" value="time␣+␣distance/speed" />

</execution:operator>
<execution:operator attribute="current_x">
<execution:parameter name="expression" value="depot_x" />

</execution:operator>
<execution:operator attribute="current_x">
<execution:parameter name="expression" value="depot_y" />

</execution:operator>
</execution:operators>

Latest allocation

Figure 6: Default subprocess of the taxi resource.

The Default subprocess of the taxi resource is shown in Figure 6 and only includes a timer event
which triggers at the time specified for the latest allocation-attribute.

Drive to pickup 
location

(a) Prepare subprocess

Drive to drop-off
location

(b) Service subprocess

Desinfect
seats

(c) Finish subprocess

Figure 7: Prepare, Service, and Finish subprocesses of the taxi resource.

The Prepare, Service, and Finish subprocesses are shown in Figure 7. The Prepare subprocess and
the Service declare a status attribute distance with objective="minimize" and weight="1" indicating
the Manhattan distance from the current taxi location to the pickup location and the drop-off
location, respectively. Furthermore, the Prepare subprocess declares a status attribute revenue



Goel

with objective="maximize" and weight="1" indicating the revenue obtained for the request. When
the Prepare subprocess is initiated, the following expression operators are applied by the execution
engine.
<execution:operators>
<execution:operator attribute="free_seats">
<execution:parameter name="expression" value="free_seats␣-␣passengers" />

</execution:operator>
<execution:operator attribute="distance">
<execution:parameter name="expression" value="abs(pickup_x␣-␣current_x)␣+␣abs(pickup_y␣-␣
↪→ current_y)" />

</execution:operator>
<execution:operator attribute="revenue">
<execution:parameter name="expression" value="fare*(abs(dropoff_x␣-␣pickup_x)␣+␣abs(dropoff_y␣-␣
↪→ pickup_y))" />

</execution:operator>
</execution:operators>

It must be noted that it is the responsibility of the controller to ensure that all restrictions are
satisfied when making decisions, in particular, those that impact the outcome of operators that
change restricted attributes like the free seats-attribute in this example.

When the Drive to pickup location task is executed, the arrival time at the pickup location, and
the new location of the taxi are determined by the following expression operators.
<execution:operators>
<execution:operator attribute="time">
<execution:parameter name="expression" value="time␣+␣distance/speed" />

</execution:operator>
<execution:operator attribute="current_x">
<execution:parameter name="expression" value="pickup_x" />

</execution:operator>
<execution:operator attribute="current_x">
<execution:parameter name="expression" value="pickup_y" />

</execution:operator>
</execution:operators>

When the Service subprocess is conducted, the distance, arrival time at the drop-off location,
and the location of the taxi are determined using the following expression operators.
<execution:operators>
<execution:operator attribute="distance">
<execution:parameter name="expression" value="abs(dropoff_x␣-␣current_x)␣+␣abs(dropoff_y␣-␣
↪→ current_y)" />

</execution:operator>
<execution:operator attribute="time">
<execution:parameter name="expression" value="time␣+␣distance/speed" />

</execution:operator>
<execution:operator attribute="current_x">
<execution:parameter name="expression" value="dropoff_x" />

</execution:operator>
<execution:operator attribute="current_x">
<execution:parameter name="expression" value="dropoff_y" />

</execution:operator>
</execution:operators>

When the Finish subprocess is initiated, the time when all used seats are desinfected and the
number of free seats are determined using the following expression operators.
<execution:operators>



Goel

<execution:operator attribute="time">
<execution:parameter name="expression" value="time␣+␣cleaning_duration*passengers" />

</execution:operator>
<execution:operator attribute="free_seats">
<execution:parameter name="expression" value="free_seats␣+␣passengers" />

</execution:operator>
</execution:operators>

After the Finish subprocess is completed, the used seats are available again and can be used by
other requests.

Taxi Taxi

Figure 8: Process requesting a taxi.

Figure 8 shows a simple process requesting a taxi. The process begins with a Request Activity
requesting the transport of passengers from a pickup location to a drop-off location. Whenever a
suitable resource is allocated to the request, a request message containing the following information
is sent to the resource.
<extensionElements>
<execution:allocations>
<execution:request>
<execution:job>
<execution:content key="PickupX" attribute="pickup_x" />
<execution:content key="PickupY" attribute="pickup_Y" />
<execution:content key="DropoffX" attribute="dropoff_x" />
<execution:content key="DropoffY" attribute="dropoff_Y" />
<execution:content key="Passengers" attribute="passengers" />

</execution:job>
</execution:request>

</execution:allocations>
</extensionElements>

The Request Activity is completed when a taxi is available to pick up the passengers. Thereafter,
the resource is released. The Release Activity, however, is only completed when the allocated taxi
has completed its Service subprocess, i.e., has reached the drop-off location.

The data provider dynamically generates new process instances of this process with the status
attributes required for the request: the attributes pickup x and pickup y give the origin coordinates
of the passengers, the attributes dropoff x and dropoff y give the destination coordinates of the
passengers, and the attribute passengers gives the number of passengers.

The allocation of requests to taxis as well as the sequence in which the respective trips are
conducted is done by the controller and different controllers can be used ranging from manual
controllers, over heuristic controllers subsequently selecting the nearest destination for the next
trip, to sophisticated optimization methods exploiting information about the status of all process
instances and the contribution of each decision to the objective.

The proposed framework can be used for both execution and simulation of these resource-aware
business process models. For execution purposes, a data provider would give all information related
to all taxi requests and would update status attributes, when necessary, e.g. if traffic conditions
cause a delay. For simulation purposes, a data provider would be used that generates taxi requests
according to some random distribution. Also status attributes could be updated dynamically, to
simulate changing traffic conditions that can cause delays.



Goel

Various alternative use cases have been developed for the proposed framework ranging from
inventory systems with periodic review to complex shipping processes in which multiple shipments
are consolidated and transport resources themselves require resources such as drivers and vehicles.
Due to the page limits, however, a detailed description of these use cases cannot be included in this
paper.

5 CONCLUSION
This paper proposes a unifying framework allowing to model resource-aware business processes in
such a way that they can be used for execution and simulation. The framework consists of three core
components: a data provider, an execution engine, and a controller. The data provider and controller
can be easily replaced depending on the use case and the entire execution logic is encapsulated within
the execution engine. The framework is designed in such a way that it allows any decision mechanism
to be deployed and that it allows for sophisticated optimization algorithms to be used. At the time
of writing this paper a controller implementing a greedy one-step lookahead decision mechanism is
developed that can be used to heuristically determine decisions that aim at optimizing the stated
objectives. The development of controllers based on efficient optimization techniques, e.g. based on
mixed-integer programming or deep reinforcement learning, is currently being investigated and an
exciting direction for further research.

REFERENCES
Goel, A., and M.-B. Lin. 2022. “Resource Requirements in Business Process Modelling from an Operations Management

Perspective”. In Proceedings of the 24th IEEE International Conference on Business Informatics, 41–48: IEEE.
Gordon, G. . 1961. “A general purpose systems simulation program”. In AFIPS ’61: Proceedings of the Eastern Joint

Computer Conference: Association for Computing Machinery.
Object Management Group 2013. “Business Process Model and Notation (BPMN) 2.0.2”.
Onggo, B. S. S., N. Proudlove, S. D’Ambrogio, A. Calabrese, S. Bisogno, and N. Levialdi Ghiron. 2018. “A BPMN

extension to support discrete-event simulation for healthcare applications: an explicit representation of queues,
attributes and data-driven decision points”. Journal of the Operational Research Society 69(5):788–802.

Pufahl, L., and M. Weske. 2013. “Batch activities in process modeling and execution”. In International Conference
on Service-Oriented Computing, 283–297. Springer.

Pufahl, L., T. Y. Wong, and M. Weske. 2017. “Design of an extensible BPMN process simulator”. In International
conference on business process management, 782–795. Springer.

Wagner, G. 2020. “Business Process Modeling and Simulation with DPMN: Resource-Constrained Activities”. In
Proceedings of the 2020 Winter Simulation Conference, edited by K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar,
Z. Zheng, T. Roeder, and R. Thiesing.

Wagner, G. 2021. “Business Process Modeling and Simulation with DPMN: Processing Activities”. In Proceedings of
the 2021 Winter Simulation Conference, edited by S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo,
and M. Loper.

Workflow Management Coalition 2013. “BPSim - Business Process Simulation Specification”. Document Number
WFMC-BPSWG-2012-1.

AUTHOR BIOGRAPHIES
ASVIN GOEL is Professor of Supply Chain Management and Logistics at Kühne Logistics University in Hamburg,
Germany. Prof. Goel holds academic degrees from the Faculty of Mathematics at the University of Göttingen
(Dipl.-Math.), from the Faculty of Mathematics and Computer Science at the University of Leipzig (Dr. rer. nat.),
and from the Faculty of Law, Economics, and Business at the University of Halle-Wittenberg (Dr. rer. pol. habil.).
His e-mail address is asvin.goel@the-klu.org. The modeller used for the examples shown in this paper is available
at https://bpmn.telematique.eu.

mailto://asvin.goel@the-klu.org
https://bpmn.telematique.eu

	Introduction and related work
	Resource-aware business processes
	Execution and simulation framework
	Example use case: shared taxi services
	Conclusion

