Ad-hoc subprocesses — The missing link between
scheduling and business process modelling

Asvin GOel[OOOO_0001_6821_6535]
Kiithne Logistics University, Hamburg, Germany
asvin.goel@klu.org

Abstract. This paper aims at bridging the gap between scheduling and
business process modeling, two fields that have evolved independently
from each other, even though both share common goals, i.e., the im-
provement of business operations. The paper shows how BPMN 2.0 can
be used to model scheduling problems using a BPMN element that is of-
ten overlooked: ad-hoc subprocesses. It shows how ad-hoc subprocesses
provide the basis for modeling scheduling requirements and demonstrates
how well-known scheduling problems, such as the travelling salesperson
problem and the job shop scheduling problem can be represented as
BPMN models. Business problems containing scheduling problems can
be directly modelled by domain experts and process owners, eliminating
the need to consult experts in mathematical programming. Moreover,
new avenues are opened for research in optimisation algorithms capable
of operating directly on BPMN models.

Keywords: BPMN 2.0 - Modelling - Optimisation.

1 Introduction

Scheduling can be described as the process of planning and organising activities
to be conducted to achieve a given purpose subject to relevant restrictions. It in-
volves determining when and in which sequence particular activities should take
place, ensuring that required resources such as time, personnel, and equipment
are allocated accordingly. The main purpose of scheduling is to improve the effi-
ciency of business operations by using mathematical optimisation techniques to
eliminate idle times and bottlenecks.

Business process modelling, on the other hand, is concerned with the rep-
resentation of processes and workflows, and involves a description of decision
points, information flows, and the sequence in which activities shall be con-
ducted. The main purpose of such models is to provide a structured way to
understand how different parts of an organisation work together to achieve spe-
cific goals or outcomes.

Although scheduling and business process modelling are both concerned with
business operations, the respective scientific fields have been evolving in isolation.
There is a good reason for this development: while business process models
usually provide a specific sequence in which activities are conducted, scheduling

2 A. Goel

focuses on determining the sequence in which activities shall be conducted. Thus,
the respective goals appear to be contradictory.

This paper aims at building a bridge between scheduling and business process
modelling with the goal of allowing the formulation of scheduling problems using
business process models. This goal is achieved by leveraging a feature in the
BPMN 2.0 specification that is often overlooked: ad-hoc subprocesses. The paper
shows how BPMN 2.0 can be used to formulate well-known scheduling problems,
like the travelling salesperson problem and the job shop scheduling problem.

2 Related work

Scheduling problems are commonly used when resources with limited capacity
have to conduct multiple tasks. In such cases, a decision has to be made when
which task is to be executed so that the capacity of the resource is not exceeded
at any point in time. In many cases, a related decision is required, i.e., the
decision when which task is to be executed by which resource. The allocation of
tasks to resources has found some attention in the literature related to business
process management, e.g., [2, 1, 6, 7|, and a comprehensive survey is provided by
[12]. Several suggestions have been made to add resource allocation information
into process models. [2] and [1] present a resource assignment language and
a graphical notation for resource assignments that can be used together with
BPMN to provide information related to the assignment of (human) resources to
tasks. Focusing on healthcare applications, [11] propose to introduce a dedicated
BPMN element indicating that a task requires a resource with limited capacity.
[8] propose so-called action-evolution Petri nets to model and solve dynamic
task assignment problems using deep reinforcement learning. Deep reinforcement
learning is also used by [9] to conduct resource allocations in business processes.

Above approaches have in common, that they assume that in order to be
executed, a task needs to be assigned to one or more resources. A different
perspective on resources is provided by [5], who does not model resources as en-
tities or objects to which tasks are assigned. Instead, it is proposed to represent
resources as processes or by processes managing the resource. Resource require-
ments can thus be represented by a collaboration between processes requiring
the service of a resource and processes providing the service. Instead of including
a task conducted by a resource into a process model, only a request for a service
is included. The task conducted by the resource is then included in the process
representing the resource, and when this task is completed, a message is sent
back to the original process indicating that the resource has completed the task.
Resource allocation decisions are therefore replaced by decisions regarding which
request message shall be sent to which process. Compatibility constraints can
easily be validated when making such decisions. To consider that most resources
can only conduct one task at a time, [5] proposed so-called resource activities
which require sequential execution of the tasks to be executed. As we will see,
the original idea of [5] can also be applied without the introduction of resource

The missing link between scheduling and business process modelling 3

activities. Instead, it is possible to use BPMN ad-hoc subprocesses to ensure
that a resource only conducts one task at a time.

3 Ad-hoc subprocesses

The BPMN specification [10] defines ad-hoc subprocesses as follows:

An ad-hoc subprocess is a specialized type of subprocess that is a group
of activities that have no required sequence relationships. A set of ac-
tivities can be defined for the process, but the sequence and number of
performances for the activities is determined by the performers of the
activities.

The specification restricts the BPMN elements that may be used within ad-hoc
subprocesses:

— Required elements: ad-hoc subprocesses must contain at least one activity.

— Allowed elements: ad-hoc subprocesses may contain data objects, se-
quence flows, associations, data associations, groups, message flows (as a
source or target), gateways, and intermediate events.

— Prohibited elements: ad-hoc subprocesses must not contain start events,
end events, conversations (graphically), conversation links (graphically), and
choreography activities.

The specification as well as other sources explaining ad-hoc subprocesses,
e.g. [3], use examples similar to the one given in Figure 1. The figure shows a
subprocess with multi-instance marker ||| and adhoc-subprocess marker ~. Sev-
eral activities are included in this multi-instance ad-hoc subprocess, but not
all of them are connected through sequence flows. According to the operational
semantics, each activity without incoming sequence flows is enabled initially. A
performer of an ad-hoc subprocess can select any of the enabled activities for ex-
ecution. When any of these activities is completed, tokens are produced on each
outgoing sequence flow and all tokens are forwarded as far as possible. Activities
that receive a token become enabled and may be selected by the performer for
execution.

Most examples known to the author describe use cases in which a certain
degree of creativity or intuition is required and in which the sequence in which
activities are conducted depend on some undefined behaviour of a human per-
former. The BPMN specification itself says that ad-hoc subprocesses do “not
contain a complete, structured BPMN diagram description” and that they allow
“modeling of processes that are not necessarily executable”. Camunda, a vendor
of process automation software, provides the following reasoning on the use of
ad-hoc subprocesses [3]:

Any party who executes this subprocess decides what to do and when to
do it. You could say that the “barely structured” nature of what happens

4 A. Goel

e) N
Write a book chapter
))
Researgh the Write text
topic
— —
))
Generate N Include
graphics graphics in text
[]
~— —
) /S
Organize Finalize chapter
references
~——— ~——
L i~)

Fig. 1. An example ad-hoc subprocess

inside this subprocess reduces the whole idea of process modeling to an
absurdity because what happens and when are the things we most want
to control. On the other hand, this is the reality of many processes, and
you can’t model them without representing their free-form character. Fre-
quent examples are when a process relies largely on implicit knowledge
or creativity, or when different employees carry out a process differently.
You can use the ad-hoc subprocess to flag what may be an undesirable
actual state. Doing so could be a step on the path to a more standardized
procedure.

Given the allegedly missing structure caused by the use of ad-hoc subpro-
cesses, they are often not perceived to be an important modelling element for
many use cases. For example, the repository provided by [4] contains over 600
BPMN models, but none of them contains ad-hoc subprocesses.

A feature of ad-hoc subprocesses that is easily overlooked is the possibility to
specify that activities within ad-hoc subprocesses must not be conducted in par-
allel by adding the attribute ordering="sequential" to an ad-hoc subprocess.
This attribute does not influence the visual appearance of the ad-hoc subprocess
and the default value is ordering="parallel". By specifying that activities in
an ad-hoc subprocess must be conducted in sequential order, BPMN provides the
means to require that a decision has to be made which activity is conducted in
which sequence. Thus, ad-hoc subprocesses with sequential ordering can be used

The missing link between scheduling and business process modelling 5

to model an essential feature required to model scheduling problems. BPMN does
not specify how such decisions are made and states that “performers determine
when activities will start, what the next activity will be, and so on”.

Performers are BPMN modelling elements without visual representation and
define the resources responsible for conducting activities. They can be specified
on process- or activity-level. A performer specified for a (sub-)process can be
interpreted to be responsible for all activities within the (sub-)process. Moreover,
a performer responsible for an ad-hoc subprocess is allowed to decide on how
often an activity in the ad-hoc subprocess is conducted and when such an activity
starts. BPMN does not restrict the behaviour of performers. Thus, it is possible
to define a performer in a way that it starts each activity in an ad-hoc subprocess
exactly once and freely decides on the start times of activities.

If such a performer is used for each ad-hoc subprocess with sequential order-
ing, we can use such ad-hoc subprocesses and performers to model scheduling
problems in BPMN. Instead of using ad-hoc subprocesses for parts of a model
that are lacking structure, we thus can use ad-hoc subprocess to define clearly
structured models in which there is a requirement that the sequence in which
activities are conducted needs to be carefully chosen to achieve operational effi-
ciency. In general, such scheduling decisions should not be conducted at the time
of modelling a process, and require knowledge of data concerning each relevant
process instance.

In the following, two examples are given demonstrating how ad-hoc subpro-
cesses with sequential ordering and respective performers can be used to model
well-known scheduling problems.

4 Travelling salesperson problem

The travelling salesperson problem can be described as the problem of finding
the shortest possible roundtrip visiting a given set of locations and returning to
the origin. Each location on the roundtrip must be visited exactly once and the
goal is to find the roundtrip that minimises the total distance travelled.

D ()
Visit location .
Return trip

Fig. 2. The travelling salesperson problem as business process model

6 A. Goel

Figure 2 illustrates a business process model of the travelling salesperson
problem. The process has a performer representing the salesperson. It starts
with an ad-hoc subprocess containing a multi-instance task responsible for visit-
ing each of the given locations. The order of visiting the locations is unspecified
and, therefore, the Visit location task is instantiated in parallel for each loca-
tion. However, as the ordering of the ad-hoc subprocess is set to sequential, the
performer must not visit different locations in parallel. Thus, all locations are
visited one after another in a sequence that needs to be determined by the per-
former. After all locations have been visited, the process continues with a task
representing the return trip of the salesperson. A data object is used allowing
to store the origin, the current location, and the accumulated distance of the
salesperson as process variables.

To fully represent the travelling salesperson problem, the origin as well as
the number of instantiations of the multi-instance activity and the respective
locations must be provided as process variables. The distance to the next location
can be determined using the process variables for the current location and the
respective next location. The accumulated distance can be stored in another
process variable to keep track of the objective value to be minimised.

An example of the travelling salesperson problem with a salesperson based
in Hamburg who is required to visit Berlin, Cologne, and Munich is given in the
following. Distances between the cities can be provided in a distance table as
shown in Tablel.

From To Distance
Hamburg Berlin 296
Hamburg Cologne 432
Hamburg Munich 778
Cologne Berlin 573
Cologne Hamburg 432
Cologne Munich 575
Berlin Cologne 573
Berlin Hamburg 296
Berlin Munich 585
Munich Cologne 575
Munich Hamburg 778
Munich Berlin 585

Table 1. Distance table

When the process starts, the current location is set to Hamburg and the
distance travelled is set to zero. Then, an instance of the Visit location task is
created for Berlin, Cologne, and Munich. The performer, i.e. the salesperson,
now needs to decide which of these tasks to perform first. For each option, it can
lookup the distance from the current location in the distance table. When the
next location is selected, the current location and the total distance are updated

The missing link between scheduling and business process modelling 7

accordingly. After having visited all locations, the trip back to the origin, i.e.
Hamburg, is conducted. If the performer always selects the location with the
smallest distance, the approach resembles the nearest neighbor heuristic for the
travelling salesperson problem.

5 Job shop scheduling problem

The job shop scheduling problem is the problem of efficiently scheduling a set
of jobs on a set of machines. Each job belongs to an order, requires a certain
amount of processing time on a specific machine, and must be conducted without
preemption. Jobs belonging to the same order must be processed in a particular
sequence. Each machine can only conduct one job at a time. The goal is to find
a schedule that minimises a specific criterion, such as total completion time or
makespan, while adhering to precedence relationships between jobs of the same
order and the limited availability of machines.

Figure 3 illustrates a business process model of the job shop scheduling prob-
lem. The model has two processes, one describing the Order process, another
describing the Machine process.

The order process starts with a multi-instance activity describing each job
belonging to the order. The sequential multi-instance marker is used to indicate
that these jobs must be conducted in the given sequence. Each job consists of
sending a message requesting to be processed by the respective machine and
waits for the machine to notify when the job is completed.

The machine process has a performer representing the machine. It contains
a single task having the sole purpose of ensuring that all job requests can be
received. After all job requests are received, this task is expected to terminate.
Job requests are handled through a non-interrupting event-subprocess which is
initiated when a job request message is received. The event-subprocess contains
an ad-hoc subprocess containing a single task responsible for conducting the
requested job. The performer of the machine process is responsible for all ad-
hoc subprocess of all active event-subprocesses. By embedding the Conduct job
task within an ad-hoc subprocess with sequential ordering, we can inform the
performer that these tasks must not be conducted in parallel even if they belong
to different event-subprocesses. After completion of a job, the event-subprocess
terminates with sending a completion notification to the job. When all event-
subprocesses have completed and no further job request is expected, the machine
process terminates.

To fully represent the job shop scheduling problem, the number of instantia-
tions of the Job activity and the respective machine required and the processing
time must be provided as process variables for each order process. For each
machine process, the number of jobs expected must be provided to be able to
identify when the Wait for jobs activity can be terminated. During process exe-
cution, the number of job requests received can be stored in a process variable.
A global variable can be used to capture the objective criterion, e.g., the total
completion time or makespan.

8 A. Goel

D Wait for jobs
U | seeesecscsesesscscscssssssesetststsssstssetststsstststssstststsssstsestasastssatnn
u
@
3
<
o
@
=
é Job request Job completion
= I’ =~
\ E} Conduct job
~
0
|
I ~
|
|
|
|
.. hococeseanes
I |
|
_________ N |
4
1 t
| |
| |
| |
| |
4 : .
@
3
<
(=8 N~
2 = =
g Send job Notice job
request completion

Fig. 3. The job shop scheduling problem as business process model

An example of the job shop scheduling problem with three machines and three
orders is given in the following. For each order, the Order process is instantiated
with the following data indicating the sequence of machines required and the

respective processing times on these machines:

— Order 1: (Machine 1, 3),(Machine 2, 2), (Machine 3, 2)
— Order 2: (Machine 1, 2),(Machine 3, 1), (Machine 2, 4)
— Order 3: (Machine 2, 4),(Machine 3, 3)

For each machine, the Machine process is instantiated with the following data

indicating the number of jobs to be conducted:

— Machine 1: 2
— Machine 2: 3
— Machine 3: 3

The missing link between scheduling and business process modelling 9

When an instance of the Machine process starts, the number of requests
received is set to zero, the Wait for jobs task starts and must not be completed
before the given number of jobs have been requested.

When an instance of the Order process starts, the Job activity is instantiated
for each job. The first job of each order sends a request message including the
required processing time to the respective machine and waits for the completion
notification. Thereafter, the instantiation for the next job is executed and so on.

When a machine process receives a job request message, the respective event-
subprocess starts and the required processing time of the job is stored in a local
variable. The process variable representing the number of requests received is
incremented. If the required number of requests have been received, the Wait
for jobs task completes and the process terminates after all event-subprocesses
have terminated.

During process execution, multiple event-subprocesses may be running for
each machine. Additional event-subprocesses may be instantiated whenever a
new job request is sent. Therefore, the performer of the machine process, not
only has to make a decision which of the Conduct job tasks to conduct next, but
also a decision whether to wait for new requests that could still arrive at the
same or a later point in time.

Even though this example only has a few orders and machines, implementing
a good decision making strategy for the job shop scheduling problem is non-
trivial and underlines the necessity of developing efficient solution approaches.
If such a decision making approach is available, we can use this approach to
solve the job shop scheduling problem based on the BPMN model formulation
provided.

6 Prototypical implementation

To provide a proof of concept, a BPMN execution engine has been designed
and implemented. The execution engine reads a BPMN model in which appro-
priate extension elements are provided specifying data attributes, restrictions
on attribute values, and operators allowing to modify data attributes. Instance
data, i.e. specific values e.g. for the number of locations and their coordinates in
the travelling salesperson problem, or the number of orders, jobs, and machines
in the job shop scheduling problem, are read independently from the process
models allowing to use the same process model for a variety of instances.

The execution engine follows the token flow logic described in the BPMN
specification and advances tokens as long as no decision is required. Whenever
a decision is required which activity within an ad-hoc subprocess shall be con-
ducted next, the execution engine requests such a decision from a dedicated
component, called the controller. The controller is responsible for making all
decisions required during process execution and different controllers may be im-
plemented allowing different decision mechanisms to be applied.

Preliminary tests have demonstrated the equivalency of the business process
modelling formulation of selected scheduling problems with the mathematical

10 A. Goel

formulation. However, it must be noted that the quality of the solutions obtained
with the prototypical implementation is not very high. At the time of writing,
only basic controllers allowing to make decisions based on simple heuristic rules
are implemented, e.g., a nearest neighbour heuristic for the travelling salesper-
son problem. It is planned to develop more sophisticated controllers based on
constrained programming or deep reinforcement learning to improve the solution
quality of the respective scheduling problems. However, the design of efficient
controllers capable of dealing with a wide range of scheduling problems modelled
as business processes is still an open research problem.

The implementation details of the execution engine and the controllers are
out of scope of this paper and cannot be presented here due to page limitations.
The source code including a comprehensive documentation and a collection of
example models is available at https://bpmnos.telematique.eu.

7 Conclusion

Scheduling and business process modelling have traditionally been considered to
be independent scientific fields and have evolved in isolation. While scheduling
allows to improve the efficiency of business operations by eliminating idle times
and bottlenecks, it usually requires experts in mathematical programming and,
depending on the underlying business problem, optimisation algorithm engineers
to develop dedicated approaches for solving the resulting scheduling problems.
Business process modelling, on the other hand, allows domain experts and pro-
cess owners without mathematical training to specify requirements of their busi-
ness processes.

This paper shows how ad-hoc subprocesses with sequential ordering can be
used to provide BPMN model formulations for scheduling problems and provides
BPMN model examples for well-known scheduling problems. The modelling pat-
tern allows domain experts and process owners to specify and formulate schedul-
ing problems inherent to their use cases. Such process models can substantially
facilitate the process of communicating the business problem to optimisation
algorithm engineers, eliminating the need to formulate mathematical programs.
Moreover, the possibility to formulate scheduling problems as BPMN models
opens a new and exiting research direction of developing optimisation algorithms
capable of working on a BPMN model to optimise a wide range of business prob-
lems. Simple algorithm using heuristic decision rules are already implemented,
but more sophisticated decision-making approaches require further research.

References

1. Cabanillas, C., Knuplesch, D., Resinas, M., Reichert, M., Mendling, J., Ruiz-Cortés,
A.: RALph: a graphical notation for resource assignments in business processes. In:
International Conference on Advanced Information Systems Engineering. pp. 53—68.
Springer (2015)

9.

The missing link between scheduling and business process modelling 11

. Cabanillas, C., Resinas, M., Ruiz-Cortés, A.: Ral: A high-level user-oriented resource

assignment language for business processes. In: Daniel, F., Barkaoui, K., Dustdar,
S. (eds.) Business Process Management Workshops. pp. 50-61. Springer (2012)
Camunda: BPMN 2.0 Symbol Reference - All BPMN 2.0 Symbols explained with
examples (2024), https://camunda.com/de/bpmn/bpmn-2-0-symbol-reference

. Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F., et al.: Reprository: a repos-

itory platform for sharing business process models and logs. In: ITBPM@QBPM. pp.
13-18 (2021)

Goel, A.: Towards a unifying framework for modeling, execution, simulation, and op-
timization of resource-aware business processes. In: Proceedings of the 2022 Winter
Simulation Conference (2022). https://doi.org/10.1109/WSC57314.2022.10015245
Havur, G., Cabanillas, C., Mendling, J., Polleres, A.: Resource allocation with de-
pendencies in business process management systems. In: International Conference
on Business Process Management. pp. 3-19. Springer (2016)

Ihde, S., Pufahl, L., Volker, M., Goel, A., Weske, M.: A framework for modeling
and executing task-specific resource allocations in business processes. Computing
(2022). https://doi.org/10.1007/s00607-022-01093-2

Lo Bianco, R., Dijkman, R., Nuijten, W., van Jaarsveld, W.: Action-evolution Petri
nets: A framework for modeling and solving dynamic task assignment problems. In:
Di Francescomarino, C., Burattin, A., Janiesch, C., Sadiq, S. (eds.) Business Process
Management. pp. 216-231. Springer Nature Switzerland, Cham (2023)

Middelhuis, J., Bianco, R.L., Scherzer, E., Bukhsh, Z.A., Adan, I.J.B.F., Dijkman,
R.M.: Learning policies for resource allocation in business processes (2024)

10. Object Management Group: Business Process Model and Notation (BPMN) 2.0.2

(2013), http://www.omg.org/spec/BPMN/2.0.2/PDF

11. Onggo, B.S.S., Proudlove, N.,; D’Ambrogio, S., Calabrese, A., Bisogno, S., Levialdi

Ghiron, N.: A BPMN extension to support discrete-event simulation for health-
care applications: an explicit representation of queues, attributes and data-driven
decision points. Journal of the Operational Research Society 69(5), 788-802 (2018)

12. Pufahl, L., Ihde, S., Stiehle, F., Weske, M., Weber, I.: Automatic resource al-

location in business processes: A systematic literature survey. arXiv preprint
arXiv:2107.07264 (2021)

